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1 INTRODUCTION

1.1 Background. Several spaceborne surveillance and weapon system con-
cepts for the USAF and DARPA require precision line-of-sight (LOS) and figure
control in order to achieve their missions. To date four major system con-
cepts have been identified: High Altitude Large Optics (HALO), Advanced
Optical Technology (ADOPT), Large Beam Expander Technology (LBET), and Large
Optics Demonstration (LODE). Each of these systems has common features in
terms of its large size, extreme complexity, low mass, low stiffness and pre-
cision structural tolerances. Each concept also is required to maintain
stringent LOS and figure stability despite the fact that isolation, damping,
and control technology required to achieve the desired performance is beyond
the state-of-the-art practiced today. New control techniques must be devel-
oped and demonstrated which have broad application to Large Space Structures
(LSS) of the type described above.

1.2 ACOSS SEVENTEEN Objective. The objective of this contract is to
extend the work and results developed under Contract No. F30602-81-C-0179
(ACOSS FIFTEEN) and specifically to study active structural control tech-
nology as applied to Large Space Structures (LSS). In particular,

1.2.1 To provide analysis and design tools that can be readily applied
by practicing dynamicists and control system engineers in their investiga-
tions and design of future Large Space Structures; and

1.2.2 To provide an evaluation of new control techniques that have been
developed for application to Large Space Structures. This objective is in
support of the overall ACOSS objective which is to develop and understand a
generic, unified structural dynamics and control technology base for LSS with
stringent line-of-sight (LOS) and figure performance requirements that must
be maintained in the presence of onboard and natural disturbances.

1.2.3 To develop highly accurate, computationally-efficient dynamics and
control models of future ACOSS-type LSS systems.

. " ..
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2. ACHIEVEMENTS

2.1 Task 1 - Digital Implementation of Control Technologies

2.1.1 Introduction. The recent advances in the area of digital com-
puting have made possible new and innovative approaches to control system
analysis and design. As far as the analysis is concerned, computers have
reduced the computational burdens associated with this process and thus
allowed the designer to use his intuition and skills to concentrate on the
control problem.

This section discusses two approaches to the design of digital control-
lers for the ACOSS structure. The first approach uses classical sampled-data
frequency domain techniques to design digital filters that exclude dynamic
effects of high frequency bending modes (with respect to control system band-width). The second approach is an extension of Seltzer's Digital Parameter
Space Method to large scale systems [1]. The method permits the analytical
and graphical portrayal of stability conditions as a function of closed-loop
damping and natural frequency.

A paper, entitled "Extensions of the Parameter Space Method to Large
Flexible Structures" (AIAA Paper No. AIAA-82-1437), was prepared by Drs.
Seltzer, Worley, and York. It was approved by RADC for presentation at the
1982 AIAA Guidance and Control Conference in San Diego in August 1982. A
copy of the paper is provided as Appendix A.

2.1.2. Computer-Aided Design.

2.1.2.1. Frequency Response Analysis. The frequency response method of
control system analysis and design has several advantages over time-domain
techniques. The main advantage is that it is possible to take a simplistic
approach to design in the frequency domain, whereas time-domain or optimal
control techniques often result in designs that are either extremely compli-
cated and expensive to implement or physically unrealizable. By cleverly
using a common data base, the frequency-domain method lends itself well to
the analysis of very high order systems.

The philosophy used here is to develop one program that could be used to
generate the sampled-data frequency responses of each transfer function in
the system. With the common data base a second program could then be used to
access the response data previously generated and algebraically manipulate it
in any manner the designer chooses.

1. S. M. Seltzer, H. E. Worley, and R. J. York, "Extension of the
Parameter Space Method to Large Flexible Structures," AIAA/AAS
Astrodynamics Conference, San Diego, California, August 1982.

2
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(a). Frequency Response Generation. The frequency response generation(FRGEN) code is used at the start of the analysis to create a workspace (data

base) where all response data will be stored. The user specifies the total
number of responses to be stored in the workspace, the total number of points
per response, the frequency range, and the sampling rate for the digital
control system. FRGEN provides the user with a menu of options for data
generation, cataloguing, printing, and plotting.

The computation of sampled-data frequency responses is accomplished
using the infinite series technique, i.e.,

g(o+)
G*(s) = - G(jw + jnw s) + (1-1)

T n= -2

where w is frequency, G(jw) is the frequency response of a continuous
transfer function, G*(jw) is the sampled-data frequency response, T is the
sampling period, (s is the sample rate in rad/sec, and g(O+) is the value of
the impulse response of G(s) evaluated at t = 0+ [2]. The series will con-
verge if the transfer function G(s) has at least one more pole than zero.
Practical use of Equation (1-1) is obtained by truncating the series after a
specified number of terms. The program was written so that the user need only
specify a tolerance for this computation, and the number of terms necessary
for convergence is automatically selected. Furthermore, the code naturally
assumes that the continuous system is preceded by a zero order hold whose
transfer function is given by

1- eTs S

Gho(s) -
s (1-2)

The program also has the capability of generating the discrete frequency
response of a z-domain transfer function by making the substitution

z = ejwT (1-3)

in the z-transfer function.

(b). Frequency Response Manipulation. The algebraic manipulation
method of analyzing sampled-data systems has been avoided to a large extent

2. B. C. Kuo, Digital Control Systems, Holt, Rhinehart, and Winston, New
York, New York, 1980.

3

6 .•°. -. ."



due to the fact that it is tedious, and somewhat unrealistic for complex sys-
tems, and hence, signal-flow-graph techniques were indeed preferable. How-
ever the signal-flow-graph technique while being more systematic, can be
extremely involved and is not easily implemented on a digital computer.

The frequency response manipulation (FRMAN) program was written to pro-
vide the user with the routines necessary to make the algebraic analysis as
simple as calculator arithmetic. Thus, by using Seltzer's Systematic Analyt-
ical Method (SAM) [3], or some equivalent technique to determine the loop
transfer functions, FRMAN can then be used to perform the mathematical opera-
tions needed to generate a desired response. Again, the common data base
makes it possible for FRMAN and FRGEN to share the same workspace.

The menu provided with the FRMAN program includes options for catalogu-
ing, printing, and plotting of response data and is identical to the FRGEN
menu. The algebraic routines provided with the code include the addition of
a constant and a response, the sum of two responses, the product of a con-
stant and a response, the product of two responses, the division of one
response by another, and finally the negation of a response,. It should be
readily obvious that very complex control systems can be analyzed using the
generation and manipulation programs.

2.1.2.2 Digital Filter Design Methods.

(a) Direct z-domain Compensator Design. A technique for designing dig-
ital controllers directly in the z-plane has been developed by Mitchell and
Tollison [4] and implemented on Control Dynamic's computing systems. In the
past, digital controller design was accomplished by first producing a w-plane
design using classical techniques such as Wakeland [5], and then by trans-
forming to the z-plane using the bilinear transformation

z-
z + 1 w -, (1-4) -

3. S. M. Seltzer, SAM: An Alternative to Sampled-Data Signal Flow
Graphs," Technical Report T-79-49, US Army Missile Research and
Development Command, May 1979.

4. J. R. Mitchell, and D. K. Tollison, "A New Approach to the Analytical
Design of Compensators," Proceedings of the 1982 Southeastern
Symposium on System Theory, Virginia Polytechnic Institute and State
University, Blacksburg, Va., April 1982.

. 5. W. R. Wakeland, "Bode Compensator Design," IEEE Transactions on
Automatic Control, Vol. AC-22, No. 5, October 1977.

4
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the corresponding z-domain compensator was derived. However, because of non-
linear frequency scaling and the z-plane transformation this method becomes
extremely cumbersome for higher order controllers. Mitchell and Tollison
developed an analytical technique that bypasses the inherent difficulties of
nonlinear frequency scaling associated with the w-plane method and permits
the z-domain compensator to be determined directly in terms of a gain and
phase at a desired frequency. The technique can be used to design various
types of digital filters including lead, lag, lead-lag, and dominant pole
networks. The discussion that follows will show how the design equations are
developed for a simple first order compensator.

The transfer function for a first order digital controller can be writ-
ten in the form

a0 + aiz
Gc(z) = (1-5)

1 + b1z

where the coefficients aO , a1, and bI will be determined such that the com-
pensator is stable, minimum phase, has unity gain in steady-state, and satis-
fies a set of design specifications.

Suppose the compensator is to be designed to produce a gain M1 and a phase 01

at some frequency w1, i.e.,

Gc(eJlT) M1/01  (1-6)

or in rectangular form

Gc(ejwlT) x, + jyl (1-7)

where T is the sampling period of the digital controller. The substitution

e z = ejwlT (1-8)

is made in Equation (1-5) and equated to (1-7) to produce

ao + alejwlT

aX + JYI. (1-9)

I + bjeJwiT

Using Euler's identity Equation (1-9) can be written as

ao + al (cos wIT + j sinw1T)

1 + bI (cos w1T + j sinwT) x1 + (1-10)

5
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Cross multiplying in Equation (1-10) yields

X1 + (xi coswIT) bl - (yl sinw1T) b'

+ j[yl + (yl cosw1T) bl + (xi sinwlT) b1] (1-11)

= 8o + (coswlT) a + j (sinwlT) al

Equating real and imaginary parts on both sides gives

ao + (coswiT) al - (xi coswjT -Yl sinwl) bi : Xl (1-12)

(sinwlT) al - (yj cw1T + xj sinwlT) bi =yj (1-13)

At this point the observation can be made that Equations (1-12) and (1-13)
represent a system of algebraic linear equations in terms of the compensator
coefficients. However, there are only two equations and three unknowns. The
third equation that can be imposed on this system is the unity d.c. gain
requirement. In the z-domain "d.c.," or steady-state, corresponds to z = 1.
Using this assertion in Equation (1-5) gives

a0 + al

Gc(1) - 1 (1-14)
1 + bj

which produces the equation,

ao + al - bi 1. (1-15)

In matrix form the design equations for the first order digi-tal controller
can be written as

1 cosw1T (yj sinw1T - X1 coswIT jao X

0 sinw1T -(yl coswIT -X sinwlT )  a = (1-16)

These equations can now be solved for the compensator coefficients.
However, some consideration must be given to the stability of the compensator
in terms of the design specifications. Mitchell and Tollison have shown that

6
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the following requirements must be satisfied in order for the resulting com-
pensator to be both stable and minumum phase:

Stability Requirements.

Lead (01 > 0) and x1 > 1 (1-17a)

Lag (01 < 0) and xi < 1 (1-17b)

Minimum Phase Requirements.

Lead (01 > 0) and M1  > xI  (1-18a)

Lag (01 < 0) and M1  < xI  (1-18b)

This technique has been implemented on Control Dynamics' HP-9000 system.
The user inputs the magnitude and phase contribution of the compensator and
the frequency at which he wants to achieve these specifications. The program
then computes the required compensator coefficients, assuming the specifica-
tions are realistically achievable. The routine has been used along with
FRGEN and FRMAN to perform frequency domain design directly in the z-plane
for a wide variety of control problems.

(b) Digital Controller Design Using the Parameter Space Technique.

(1). Background. The Parameter Space technique has been extended to
the application of digital controller design for large scale systems. The
method being presented here permits the application of the technique to con-
trol problems associated with digital control of large flexible structures
characterized by a rigid body mode and an arbitrary number of bending modes.
Based upon stability considerations and the desired damping and bandwidth,
values for the compensator coefficients can be determined using this tech-
nique. The major contribution of the work presented is the ability to
design digital controllers using the Parameter Space technique in the pres-
ence of an arbitrary number of bending modes. Furthermore, the method
discussed here has been automated on Control Dynamics' digital computers.

The Parameter Space method assumes that the characteristic equation of
the closed loop system can be expressed as a linear function of the parame-
ters defining the parameter space, i.e.,

A(z) = P1 (z) a + P2 (z) b + P3 (z) (1-19)

where a and b are the two arbitrary parameters. The polynomials P1 (z),
P2 (z), and P3(z) are of the form,

n
Pi(z) = Z Ckizk, i = 1, 2, 3 . (1-20)

k=O
7q
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where n is the order of the system. The characteristic equation in (1-19)
requires that the overall system be expressed in the z-domain. This aspect
of the problem becomes significantly difficult for n > 2. Therefore, some
method must be devised for automating the z-transform process. The work that
follows will be devoted to determining the polynomials Pl(z), P2(z), and
P3(z) given by Equation (1-20).

(2) Plant Representation. It is assumed that the plant is expressed

in modal coordinates, i.e.,

[m]X + [kIX = F (1-21)

where

[m] is the system mass matrix,
[k] is the system stiffness matrix,
F is a vector force or torque,
Y is a vector of system states

Using the transformation

X=Qn
(1-22)

where Q is the modal matrix composed of the normalized eigenvectors, and n is
a set of generalized coordinates, the desired representation

+ [cn + W2]n_ = Tc (1-23)

is produced. The matrices [c] and [uY] are the diagonal damping and fre-
quency matrices, respectively.

Using the Laplace transform technique the transfer function for the
plant is given by -_-_

N i Yi
Gp(s) = 52 + (1-24)

i=1 S1 + 2SniS + Wni

where

is the damping ratio for each mode,
is the undamped natural frequency

of the ith bending mode,
4 0i and yi denote the slope of the ith

mode at the sensor, torquer, respectively.

8
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The block diagram representation of Equation (-24) is shown below in Figure

Y 2

SS

s3 Z ;ws +.- 2

2 2C3w3s , -'."

Figure 1-1. Block diagram of the plant for the modal representation.

(3) Control Algorithm Development. Now suppose it is desired to
design a digital controller to stabilize a system of the form shown in Figure
1-1. (The block diagram in Figure 1-2 showing a digital controller in the
forward path will be used for the sake of illustrating the design technique).

J1GITAL CQU -- PLNT

0 I 71uj-.

I I U
, I I

* ~ - --- - ,

Figure 1-2. Block diagram of the digital control system.

Since the characteristic equation must be expressed in the z-domain, it

is necessary to obtain the z-transform of the plant, Gp(s), where Gp(s) is

.9S

9q
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given by Equation (1-24). The process of computing the z-transform directly
for systems of order higher than two is extremely difficult, if not impos-
sible. An alternate approach for obtaining the z-transform is to first cast
the continuous system in state variable form, i.e.

x (t) = A x(t) + B u(t) (1-25)

YO(t) = C x(t)

where

A is the 2N x 2N system matrix,

B is the 2N x 1 input matrix,

C is the 1 x 2N output matrix,

x is the 2N x 1 state vector,

and yo is the system output,

N is the number of modes, including the rigid body mode.

It is now possible to transform the continuous state equations in Equa-
tion (1-25) to an equivalent set of discrete state equations. Kuo has shown
that the following procedure can be used to compute the discrete state equa-
tions:

Discrete state equations

x[(k + 1)T] = O(T) x(kT) + O(T) u (kT)

Yo (kT) = C x (kT) ,k=O, 1, 2 . . .

o(T) = eAT (1-26) > .1
O(T) = fT O(T) B dT (1-27)

0

Where A and B are defined in Equation (1-25). The following steps can now be
used to compute the z-transform of the plant:

(1) Convert discrete state equations to the z-domain

zX(z) = O(T) X(z) + O(T) U(z) (1-28)

(2) Solve for X(z)

X(z) [zl - *(T)-I O(T) U(z) (1-29)

10
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(3) Use the output equation to compute the z-transfer function of
the plant,.._

= C [zI - (T)]- 1 0(T) U(z)

Ylz)

Then - C[zI -(T)]-l O(T) (1-30)

Equation (1-30) represents the z-transfer function for the open loop

plant in Equation (1-24). Now assume that

Y(z) = Np(z) (1-31)

U(z) Dp(z)

and also assume the digital controller is of the form

Nc(z) (1 + a)z + (1 - a)
Gc(z) = - = (1-32)

Dc(Z) (1 + b)z + (1 - b)

* Note that the form of the compensator in (1-32) results in only two arbitrary
coefficients, which is ideal for the Parameter Plane, and also produces unity
gain in steady-state (z=1).

Using Equations (1-31) and (1-32), and the block diagram in Figure 1-2,
the closed loop characteristic equation can be written as

Nc(z) Np(z)
A(Z) = 1z + - - = 0 7

Dc(Z) Np(z)

or

A(z) = Nc(z) Np(z) + Dc(z) Dp(z) = 0

Substituting the numerator and denominator of the digital compensator for
Nc(z) and Dc(Z) yields

A(z) = [(1 + a) z + (1 - a)] Np(z) (1-33)

+ [(1 + b) z + (1 - b)] Dp(z) = 0

111
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Equation (1-33) can now be written in the form required for the Parameter
Plane calculations,

[(z - 1) Np(z)a + Uz - 1) Dp(z)] b + (z + 1) [Np(z) + Dp(z)] =0 (1-34)

Comparison of Equations (1-34) and (1-19) shows that the polynomials neces-
sary to generate a parameter space in terms of the compensator coefficients
a and b are:

Pj(z) =(z - 1) Np(z)

P2 (z) = (z- 1) Dp(z) (1-35a,b,c)

P3 (z) = (z + 1) [Np(z) + Dp(z)]

and

where Np(z) and D (z) are the numerator and denominator polynomials, respec-
tively, of the z-transfer function of the open-loop plant defined by the sub-
stitutions implied by Equations (1-30) and (1-31).

Equations (1-35a,b,c) contain the polynomial coefficients necessary to
use Seltzer's Digital Parameter Space Program. This technique has been
applied successfully on large space structure controller design. The follow-
ing is a summary of the steps involved in using this design technique:

Step 1: Assuming plant is characterized by modal coordinates, cast
in state variable form,

Step 2: Compute the discrete state equations by discretizing the
continuous equations in Step 1,

Step 3: Generate the z-transfer function of the open loop plant
using Equation (1-30),

Step 4: Generate the z-domain characteristic equation of the closed
loop system including the digital controller coefficients
(unspecified),

Step 5: Identify the polynomials needed to run the Parameter Plane
Program.

Each of these steps has been automated on Control Dynamics' computer
system. The only approximation used in the design process is the computationof the discrete state equations. However, if the system is basically low- i

pass, convergence of the series is not a problem, assuming the proper choice
of the sampling rate has been made. 122
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2.1.3. Conclusions.

Software routines have been written that allow systems of the DARPA type
to be analyzed quickly and efficiently. Frequency domain design programs
have been developed that allow digital compensators to be designed rather
simply. A design technique has also been developed that extends the applica-
tion of Seltzer's Digital Parameter Space technique to the design of digital
controllers for large flexible structures characterized by an arbitrary
number of bending modes.

1
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2.2 Task 2 - Extensions of Modeling Techniques.

2.2.1 Ground Test Facility. Control Dynamics modeled the NASA MSFC
Large Space Structure Ground Test Verification Facility (LSS/GTV) which is
shown in Figure 2-1. The test article is the ASTROMAST beam which is placed
atop the Advanced Gimbal System Engineering (EAGS) model. The EAGS, along
with a torque actuator about the vertical axis, provides three torques which
may be used both for control and excitation. The base of the test apparatus
provides two translational degrees of freedom in the horizontal, producing a
five degree of freedom (DOF) system. --

The ASTROMAST is gravity unloaded by a constant tension cable from the " "
mast Tip Instrument Package (TIP) to a tripod mounted on air bearings. Mea-
surements of translation and rotation of the TIP are provided by gyros and
accelerometers in the instrument package. An additional set of gyros is
mounted on the EAGS faceplate. An accelerometer package is mounted on the
movable base.

Signals from the instrument packages and to the effectors are handled by
the COSMEC I data and control system at a rate of 50 sampl es per second.
This AIM 65 based system carries out an inertial strapdown algorithm to
remove the effects of gravity and earth rotation from the measurements, exer-
cises a system control law and utilizes the HP 9845C desktop computer as a
data storage, output and post analysis device.

The model of the LSS/GTV is based on rigid body models of the base, EAGS
and TIP. The ASTROMAST consists of three small (.X" x .14") rectangular fiber-
glass longerons running the length of the ASTROMAST that are laced together -
in an equilateral triangle configuration by .045" diameter fiberglass diago-
nals which are maintained in tension by transverse battens. The diagonals
provide the lateral stiffness of the ASTROMAST which is designed to be
deployable from a cannister into which it cdn also be retracted manually.
The ASTROMAST consists of 92 identical levels with battens at each level and
diagonal lacework between. The diagonals are cords of fiberglass which are
held in tension by the battens. A model of the ASTROMAST beam was also
developed and coupled analytically to the rest of the LSS/GTV model. The
energy dissipation within the beam structure has previously been shown to be
on the order of 1% or less of critical damping and distributed around the
structure. Thus, detailed analysis of the damping of this structure has not
proved to be necessary, so that proportional, modal damping has been used for
this model.

The modes and frequencies of the composite model are presented in Table
2-1. To be conservative, we have assumed the structural modal damping is
0.5%. All modes of our structural model are assumed to be damped at 0.5% of
critical. The inertial displacements are listed for base translation in X and
Y; and gimbal rotations in X, Y, and Z. Motion in six degrees of freedom is
also given for both ends of the beam.

14
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The first five modes are rigid body modes. It can be seen in Table 2-1
that modes one and two are pure base translations in X and Y. The next three
modes are combinations of base translation in X and Y, and gimbal rotations
in X, Y, and Z. The first bending mode of the structure is at 5.91 rad/sec. _

2.2.2 Conclusions. The modeling techniques developed for the LSS/GTV
were given important corroboration by modal testing done on the ASTROMAST
beam at MSFC. These results indicated accuracies in the lower modes of 11%
or better. Thus, a dynamic model was developed of the LSS/GTV and it has
been verified, to the extent it can be currently, with the data available.
The modeling techniques, therefore, adequately represent the structures.
Because the work on Tasks 2 and 5 was so closely related, the results and
conclusions reported in this section serve to describe the accomplishment of
the objective of both tasks.
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TABLE 2-1.

Mode and Frequencies of Composite Model.

MODAL FRCOULOCT 0.0000000 RAD/SEC X y Z
BASE TRANSLATION 0.7200337 0.0000000 0.0000000
ROLL GIMBAL ROTATION 0.0000000
AZIMUTH GUItAL RUrATION 0.0000000

ELEVATION GIMBAL ROTATION 0.0000000

SEAM BASE TRANSLATION 0.7209357 0.0000000 0.0000000
BEAN BASE RUIAlION 0.0000000 0.0000000 0.0000000
TIP INSTRUMENT PACKAGE TRANSLATION 0.7209357 0.0000000 0.0000000
TIP INSTRUMENT PACKAGE ROTATION 0.0000000 0.0000000 0.0000000

MODAL FREOUEXCY 0.0000000 RAD/SEC
BASE TRANSLATION 0.0000000 0.720U357 0.0000000
ROLL GIMBAL ROTATION 0.0000000
AZIMUTH GIMBAL ROTATION 0.0000000
ELEVATION GIMBAL ROTATION 0.0000000
DEAN BASE TRANSLATION 0.0000000 0.7208357 0.0000000
DEAN BASE ROTATION 0.0000000 0.0000000 0.0000000

TIP INSTRUMENT PACKAGE TRANSLATION 0.0000000 0.720U357 0,0000000

TIP INSTRUMENT PACKAGE ROTATION 0.0000000 0.0000000 0.0000000

MODAL FREOUENCY 0.0000000 RAD/SEC
VASE TRANSLATION 0.0101990 -0.0012932 0.0000000
ROLL GIMBAL ROTATION 0.1187935

AZIMUTH GIMBAL ROTATION , 0.0000000
ELEVATION GIMBAL ROTATION 0.0000000
DEAN BASE TRANSLATION 0.0101yo0 -0.0012932 0.0000000
BEAM VASE ROTATION 0.0000000 0.0000000 0,1197835
TIP INSTRUMENT PACKAGE TRANSLATION -0.2215391 0.0280927 0.0000000
TIP INSTRUMENT PACKAGE ROTATION 0.0000000 0.0000000 0.1187935

MODAL FREOUENCT 0.0000000 RAD/SEC
BASE TRANSLATION • -0.2426753 -0.0000825 0.0000000
ROLL GIMBAL ROTATION 0.0073818 |
AZIMUTH GIMAL ROTATION 0.0063638
ELEVATION GIMBAL ROrATION 0.0000000
BEAM VASE TRANSLATION -0.0791644 -0.0000023 0.0000000

DEAM BASE ROTATION 0.0000000 0.0063638 0.0075818
TIP INSTRUMENT PACKAGE TRANSLATION 3.2469774 0.0017931 -0.0015743
TIP INSTRUMENf PACKAGE ROTATION 0.0000000 0.006363S 0.0071a8

MODAL FREOUENCY 0.0000000 RAU/SEC
BASE TRANSLATION -0,0000439 0.2133059 0.0000000

ROLL GIMBAL ROTATZON 0.0009661

AZIMUTH GIMBAL ROTATION 0.0000033
ELEVATION GIMBAL ROTATION 0,0064128
DEAN BASE TRANSLATION 0.0000413 0.1025569 0.0000000
BEAR BASE ROTATION 0,0064123 0.0000033 0,000Y661

TIP INSTRUMENT PACKAGE TRANSLATION -0.0001019 -3.2637730 0.0125100
TIP INSTRUMENT PACKAGE ROTATION 0.0064123 0.0000033 0,0009661

MODAL FREOUENCY .9,13205 RAD/SEC
BASE TRANSLATION 0.6340323 0,0000961 0.0000000

ROLL GIMBAL ROTATION 0.0017399
AZIMUTN GIMBAL ROTATION -0904Y7099
ELEVATION GIMBAL ROTATION 0.0000120

17

i



1 .7 ........ .....

TABLE 2-1. <CONT.)

x y z

SEAM VASE TRANSLATION -0.&432107 -0.0001104 0.0000000

TIP INSTIIM LNT PACKAGE ROTATION -0.0000228 0.0343617 -0.0163021

MODAL FREOULNUY 7.2V3426 RAD/SEC

VASE TRANSLATION -0.0003123 0.49Y1170 0.0000000

ROLL GIZMAL ROTATION -0.0001548

AZIMUTH GIMBAL ROTArION 0.0000230

ELEVATION GIMBAL ROTATION 0.0602246

BEAM BASE rRANSLATION 0.00032Y7 -0.509624 0.0000000

REAN BASE ROTA71ON 0.0602246 0.0000250 -0.0001448

TIP INSTRUMENT PACKAUE TRANSLATION -0.0003338 0.5674694 -0.0894927

TIP INSTRUMENT PACKAGE ROTATION -0.0453606 -0.0000090 0.0000523

MODAL FREOUENCY 11.29450 RAD/SEC

VASE TRANSLATION -0.0302741 -0.0009661 0.0000000

ROLL GIMNAL ROTATION 0.0194101

AZIMUTH GIMBAL ROTATION 0.0024533
ELEVATION 01MVAL ROTATION -0.0000814

BEAN &ASE TRANSLATION 0.0327604 0.0004400 0.0000000

SEAN VASE ROTATION -0.0000614 0.0024533 0.0164101

TIP INSTRUMENT PACKAGE TRANSLATION 0#0370206 -0.0081332 0.0009380

TIP INSTRUMENT PACKAGE ROTATION -0.0000700 -0.0043433 -0.7151111

MODAL FREQUENCY 20.44361 RAD/SEC
BASE TRANSLATION -0.4059113 -0.0021554 0.0000000

ROLL GIMBAL ROTATION -0.0001958
AZIMUTH GIMBAL ROTATION 0.0339763

ELEVATION GIMBAL ROTATION -0.0002347
BEAN BASE TRANSLATION 0.4670748 0.0027617 0.0000000

BEAN BASE ROTATION -0.0002347 0.0339763 -0.0001938

TIP INSTRUMENT PACKAGE tRANSLAtION 0.3724387 0.0012984 -0.0236142

TIP INSTRUMENT PACKAGE ROTATION -0.0003839 0.0924256 0.030342

MODAL FREOUENCT 23.29484 RAD/SEC
SASE TRANSLATION 0.0019001 -0.4694157 0.0000000

ROLL GIMBAL ROTATION 0.0001102

AZIMUTH GIMBAL ROTATION -0.0001597

ELEVATION GIMBAL ROTATION -000616355

DEAN BASE TRANSLATION -0.0022049 0.5963746 0.0000000

SEAM BASE ROTATION -0.0616555 -0.0001598 0.0001902

TIP INSTRUMENT PACKAGE TRANSLATION -0.0019192 0.3291798 -0.17V1701

TIP INSTRUMENT PACKAGE ROTATION -0.0019095 -0.0005573 -0.00YO476

NODAL FREGUENCY 57.36499 RAD/SEC

BASE TRANSLATION -0.1169710 -000530800 0.0000000

ROLL GIMBAL ROTATION - 0.0000152
AZIMUTH GIMBAL ROTATION 0.0105723

ELEVATION GINBAL ROTATION -0.0074173

DEAN BARE TRANSLATION 0.1546738 0.0730166 0.0000000

BEAN BASE ROIATION -0.0074173 000105723 0.0000152

TIP INSTRUMENT PACKAUE TRANSLATION -0.1921338 -9.0510709 0.1023474

TIP INSTRUMENT PACKAGE ROTATION 0,0371453 -0.1227977 -0.0027129

NODAL FREQUENCY 59.02358 RAO/SEC

BASE TRANSLATION 0.0377394 -0.1626017 0.0000000

ROLL GIMIAL RUTArION 0.0000524
AZIMUTH GIMBAL ROTATION -0.0034170

ELEVATION GINAL ROTArION -0.0227311

DEAN BASE TRANSLATION -0.0500091 0.229V638 0.0000000
EAN BASE ROTATION -000227311 -0.0034170 0.0000524

TIP INSTRUNENT PACKAGE TRANSLATION 0@0637053 -001613539 0.2150347

TIP INSTRUMENT PACKAGE ROTATION *.1153@53 *00400853 -0.013413

18
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2.3 Task 3 - Evaluation of ACOSS Control Methodologies.

2.3.1 Introduction. Recent technological advances in active damping
control techniques applied to Large Space Structures (LSS) include Lockheed's
Low Authority Control/High Authority Control (LAC/HAC), TRW's Positivity, and
General Dynamic's Model Error Sensitivity Suppression (MESS). Each of these
techniques, developed under the DARPA ACOSS program, incorporates a different
approach to the control problem.

Each of these techniques is described in a similar format in an attempt
to enhance understanding and to aid in comparison. A flowchart form of each
technique's control law design procedure has been developed by Control
Dynamics and is presented. This form will provide an orderly, methodical
approach to understanding the development of an active control scheme. This
approach is useful when first learning to apply these seemingly complicated,
multi-faceted design tools. It provides a means of comparison of the various
techniques in that the complexity of implementation, ease of understanding,
and practicality can be readily observed. Each of these qualities is of
considerable importance, especially when contemplating their application to
control of complex, high order space structures.

The numerous problems inherent in LSS control system design include the
following:

Inaccurate structural models.

(a) modal truncation - approximation of an infinite dimensional
system by a finite dimensional model

(b) inaccurate knowledge of modal frequencies and mode shapes,
especially high frequency modes

(c) poor knowledge of structural damping

Effects of including non-colocated actuators and sensors.

Spillover - effects of unknown high frequency modes on the system control "_
and observation. O

Effects of including accurate sensor and actuator dynamic models.

Each technique incorporates a variety of distinctive concepts to solve these
numerous problems associated with LSS control.

19
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2.3.2 TRW's positivity design.[6]

2.3.2.1 Objective. Assure stability of control system designs based on
inaccurate structural models. Design a robust control system with respect to
the following model errors - modal truncation and poor knowledge of modal
frequencies, mode shapes, and structural damping.

2.3.2.2 Properties of technique.

(a) No assumptions are made concerning dimensionality or linearity
of systems involved

(b) Low sensitivity to model errors

(c) Conservative design.

2.3.2.2 Overall approach. Design is augmented by pre-flight and
on-orbit data. All preflight information is incorporated in the initial pos-
itivity design. The key parameters are identified using on-orbit perfor-
mance. Improved knowledge of model parameters is used to "fine tune" the
system for optimum performance.

S
2.3.2.4 Positivity results.

(a) A negative feedback connection of a positive system with a
strictly positive system is stable.

(b) A LSS with colocated, ideal actuators and rate sensors is a
positive system.

(c) Embedding operations permit the treatment of non-positive
systems.

2.3.2.5 Basic theory. Positivity is a design method which has low sen-
sitivities to model errors.

2.3.2.6 Definitions.

(a) Positive real: the real part of a transfer function as a func-
tion of frequency is always greater than or equal to zero.

(b) Strictly positive real: the real part of a transfer function
as a function of frequency is always greater than zero.

6. "ACOSS Eight (Active Control of Space Structures) Phase II," TRW,
Sponsored by Defense Advanced Research Projects Agency, Report No.
RADC-TR-81-242, September 1981.
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2.3.2.7 The TRW positivity design procedure applies the positivity theo-
rem to LSS control system design. The theorem imposes restrictions of posi-
tive realness and strict positive realness on the plant and controller, and
this guarantees an asymptotically stable system.

ii The two basic design steps are:

Step 1 Assure plant (LSS) is positive real.
Step 2 Design controller that is strictly positive real.

Apply Positivity for Control
System Design

Positivity Theorem: System S is asymptotically
stable if one of G or H is strictly positive

real and the other is positive real.

CTLR PLANT

r t H(s) ut G(s) y(tI

System
S *

*to be strictly positive asymptotically

note: STEP 3 is added if embedding is used

"" S .

STEP 3: Ensure embedded controller
remains strictly positive
after embedding

*

STEP ei: STEP 3b:

eenge sEPign addedf embedding designvi Anbdrsng Tesg n using positivity plot
via Anderson Test io) predesign H(s) to w/stand
[use pre-fb compensation) D embedding)

21
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The positivity of a system* is determined either in the time or frequency
domain. Of course, knowledge of the plant is necessary to calculate its posi-
tivity. The time domain test uses B.D.O. Anderson's positivity criterion. [7]
Application of this test results in the observation that the transfer matrix
of the LSS is positive real if ideal, colocated actuators and rate sensors
are used. A disadvantage of this test is that inclusion of the actuator and
sensor dynamics with the LSS makes it difficult to apply. The frequency
domain test incorporates a positivity index - a measure of positive realness
of a system. The frequency domain test has the advantages of obtaining ex-
perimental frequency response data and of easily inclhding actuator and sen-
sor dynamics.

STime Domain Frequency

(BOO Anderson) Domain

G(s) Description Define Positivity Index, 6(w)

G(s) = C(sI-A)'B + G(-) 6(w) = Amin( (G(jw)+G (jw)]}

where where min { -I denotes the
i = Ax + Bu [minimum eigenvalue of {-}.

y = Cx + G(-)
(Assume G(-) is finite)

"__ _ _no

Test for G(s) Being RESULT: Is 6(w) O for all w
Positive Real G(s) is not yes

Does P exist such that positive real
P is a symmetric, positive no Is 6(w)>O for all W
definite matrix and do Wo  no
and L exist so that: no yes

i) PA + AIP = -LL if

ii) W0Two = G(-) + GT(o) HRESULT: RESULT:
iii) cT = PB + LW G(s) is positive G(s) is strictly -

oi) real positive real

yes

Does P exist such that no
P is a symmetric, positive n1

definite matrix so that: yes
PA + A p = -Qye

and Q is positive definite

7. Anderson, 8.0.0, "A System Theory Criterion For Positive Real
Matrices," SIAM J. of Control, Vol. 5, No. 2, pp 171-182, May 1967.
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An apparent shortcoming of the positivity approach is realized if the
plant is determined to be non-positive, since the theorem requires a positive
plant. However, a design tool found instrumental in establishing the positi-
vity of a non-positive system is operator embedding. Through selection of an
appropriate embedding operator, the embedded plant becomes positive, and thus
satisfies the requirement of the first step.

Step 1 in positivity design.

If the plant G(s) is not positive, use D (parallel) embedding theory to
obtain a positive G(s)+D(s). The embedding transformation is purely mathe-
matical and is not implemented in a physical sense, but it may impose con-
ditions on the controller which are implemented. The effect of D embedding is
to decrease the gain of the controller. Therefore, the controller H(s) must
be very stable and positive initially so that the D positive feedback loop
does not destabilize it. (Note: another embedding technique, F (cascade)
embedding, also exists, but is not used in this case)

23
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,r".. . . . . . . . . . . . . . . . .

SSTEP 1,: Assure Plant G(s) I:::

is positive real "--,

yes Is plant (inclusive of A and S dynamics)
I positive ? (Recon~end frequency domain test]).

Proceed to no..
STEP 2 - _

this situation Use operator embedding to
appears only establish positivity.
for ideal,I.- i

colocated
A and S " -

0 embeddinq

H G

+

oriainal system embedded Sys tem

Select 0 operator:e
G(s)+D(s) is positive real

Define positivity index of G and G+D
6G(). 6G+D(w) . Calculate 6G(w).

Desired Result:

d >0) V wcrO.as)6G+O( >

D operator selection G(s)*D-

being positive real

D(jw) -d(j=)-

Choose d(jw):Re Cd(Jwl> -S r e.

RESULT:

G(s) is positive real

24
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, Step 2 in positivity design.

The controller is designed using Linear Quadratic Gaussian (LQG) con-
troller topology and by applying optimal control and estimation techniques.
In addition, the positivity.criterlon is applied to produce a strictly posi-
tive real controller.

25
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I STEP 2: Design Controller H(s) I
- to be strictly positive real ]

Use LQG controller topology

* A

State equations: W/o B c loop

x c a(A -G C) c+ Gc

c C AC C
A u(s) K

C

* ~~~(s) (si- r)-G r~A-
y~s c Cc c

H~)=u(s) =K S
y~s) c

Solve for estimator gain matrix, G.

(use steady state Kalman filter gain
solution).

Apply Anderson's positivity criterion
so that H(s) of controller is strictly
positive real:

1) Solve for P:
Pr + rP= -Q

ianyc positive, definiteJ

2) Salve for K

*Kr PG
3) Add B c Loop

Br = G

[RESULT: H(s) is strictly positiera
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Step 3a in positivity design.

If embedding is used to assure a positive plant, it is necessary to com-
pensate for the effect of embedding on the controller. While contributing

* positively to the plant, the embedding operation contributes negatively to
the controller. Implementation of a pre-feedback loop around the controller
eliminates the negative effect of the embedding operator or the controller.
(i.e. the pre-feedback ensures that the controller remains strictly positive
even after embedding).

STEP.3a: .0 embedding desiqn
via the Anderson Test

Implement pre-feedback to create
new controller that is positive
even after D embedding wraps a
+6 1 feedback around it.

implemented
controller

, I -.0

embedded
l__ __-_control l er

I *

0 operator

Define 6o > -Smin  0

Implement pre-feedback: RESULT:

Wrap -6 1 feedback around System is asymptotically stable.
0

positive controller.
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Step 3b in positivity design.

Determine the positivity index 6 ( ) and choose 60 for D operator. Using
the positivity plot, predesign the controller such that the controller with
loop gain remains strictly positive. The positivity plot is a plot of closed
loop gain and phase as a function of open loop gain and phase.

STEP 3b: D embedding design using
the positivity plot -

Compute S(M)
Choose 60 -6min

Draw positivity plot

positive fb system

CL gain and phase of a
positive fb system
as a function of OL

values.

Ensure that controller H(s)
w/ loop gain 6 I lies

0
w/i ±_ 900 CL phase

region of plot
4- 0

RESULT:
System is stable

28
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Another method of applying positivity to the design of control systems
is "D embedding with frequency domain precompensation." To apply this
method, a full multivariable linear frequency-type design is performed to
determine the precompensator M(s). The design involves extension of the
classical Nyquist/ Bode approach to the multivariable case. [8] It incor-
porates the examination of the characteristic gains of the open loop plant 71
(or precompensated plant) transfer matrix. Then, D embedding is applied to
ensure positivity of the precompensated plant. j

0 embedding design combined with
frequency domain precompensation

Use multivariable freq-domain type
design to determine cascade
precompensator M(s). [i.e. M(s) is
.designed for perf. and desired hiqh-f
roll-off.]

controller precompensated
- _ - I plant

H M
60 s

L

Determine 0 operator to make
precompensated plant positive

1) Find 6(w) of precompensated

plant.

2) Choose D = 6 where

0 mi n

Design "H" part of CTLR RESULT:

H I Stable System

8. MacFarlane, et. al., "Complex Variable Methods for Multivariable
Feedback Systems Analysis and Design," in Alternatives For Linear
Multivariable Control, NEC, Chicago, Ill., 1978.
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2.3.3 TRW's positivity design for non-colocated systems.J9]

2.3.3.1 Objective. Extend the positivity approach to enable control 2
design of non-colocated systems. The theoretical efforts are:

(a) Find design conditions for a non-square plant which, when
imposed, result in a stable system.

(b) Develop a procedure to make a non-square plant square (i.e.
squaring filter).

Non-colocated is defined as being non-positive and/or non-square (an
unequal number of inputs and outputs). The property of non-positivity is

* handled as it were in colocated control (through operator embedding) and is
not a limitation of the positivity approach. However, the property of being
non-square is not considered in the initial positivity design approach (ACOSS
8), and was investigated later (ACOSS 14). The resulting approach to non-
colocated control is twofold; it may be handled via a squaring procedure or
via a stability ensuring design condition for non-square systems.

9. "ACOSS Fourteen (Active Control of Space Strucutures)," TRW,
Sponsored by Defense Advanced Research Projects Agency, Contract No.
F30602-81-C-0194, November 1982.

30

" St



(a) Find conditions required for non-square plant to ascertain
stabil ity.

The conicity theorem is applied to the system to provide a stability en-
suring design condition for a non-square system. The positivity theorem is

found to be a special case of the conicity theorem, which has no limitations
to square systems. Two types of operator embedding, parallel (D) and cascade

(F), are employed in the derivation of the design condition. The condition
is then applied to a non-square system to generate the control law.

I Conicity theorem: if the open loop gain of GH < 1, then the closed
loop system is stable

Applying conicity results in the imposition of two design conditions on

each of the possibilities inherent in non-square plants (i.e. # outputs > #
inputs or # inputs > # outputs).

Stability ensuring design
condition for non-square
plants* '

I condition of Conicity - -

IG lI=II (G + D)F' < I

2nd condition of Conicity F G

[IHI!=IF( I - Ho)-'H [f< I

Apply condition 1:

JIG + D[*II FII
(true system G differs
from nominal system-D

by at most"FJ "

If both conditions are _
satisfied, then GH and -
GH are stable.

Fraore inouts than outputs i  more outputs than inouts I

* 31
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G G [GGG, = colocated

G = noncolocated

H [FHi ] 
H, 1 colocatcd
H2 =noncolocated

4 20

nd
Apply 2n condition of' Conicity:

G = [G I.' G F = [Fl,' F2

0= [ 1] H [36
Substitute into:
B F(I - H)'HII < I

Use I2 norm to evaluate expression.

Apply Parseval's theorem.
Resulting condition:

X ((F H + F H) (F H1 + F H}
max 1 1 211 2 2) RESULT: Stability

minn 1 H1 1 + H2D02) (1 + H101 + H202)) condition0
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Smore outputs than inputs --

Partition plant G and controller H into
colocated and noncolocated parts.

[G, G = colocated
= = noncolocated

H = [HIH 2 ] H1 = colocated -

H2 = noncolocated

IG !0

Apply 2 condition of Conicity

G 1  F13

Ii [j H
02 H H 1 ,H 2 "

Substitute into:

UF(I - HO)-' HII< 1 S

Use L2 norm to evaluate expression.

Apply Parseval's theorem.
Resultinq condition:

EH FH <~ I 1 1:F 1 2  F1 1 I I . SULT: Stability
0maxj[ 1  1 F 2  2H 1  2I ensurinq design

condition

* 33



(b) Basic outline for control of non-colocated systems using
squaring filter.

The squaring procedure involves design of a squaring filter through -, 0
which a non-square plant is made square. After establishing a square plant,
the design procedure continues as colocated positivity design.

STEP 1:

Design K so that:

1) Performance is enhanced.
(i.e. discriminate against modes
which don't influence performance
and in favor of modes which affect
performance most]

* 2) Relative stability is maximized.
Esystem as close as possible to
a positive system)

STEP 2:

Design controller G (z) using the
positive system. c

RESULT: CTRL PLANT

+ G

K(z) H(z) Gc (z)K(z)
34
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The squaring filter can be designed in either the time or frequency do-
main. In the time domain, a constant squaring matrix is determined. A dis-
advantage is the procedure may require a high number of sensors if many modes
are to be controlled. In the frequency domain, the squaring procedure is
separated into three steps:

1. Design the d.c. gain of the filter, Ko
2. Design the frequency dependent portion of the filter, a(u;) .1
3. Approximate resultant filter by realizable discrete-time filter c(z) c

In many frequency domain cases, a constant K=Ko gives reasonable results and
no filter is required.

Time .Frequency 
-D o m a i n 

Do0 i n

Is nc = max(r,m) ? Make the noncolocated

r = sensors yeys ste positive by
msenscuaors - using a constant 

" .

nc = modes to be squaring matrix, K.
controlled KT C*),]T

no time domain test

Is n> r ? - doesn't handle

y this possibility
K becomes a function

of frequency.

Obtain a squared-down
system which is close
to a positive square STEP 1A: Find dc value
sy stem. of K matrix, K.
Li.e. system with good
stability characteristics]

K (C *)+ STEP IB: Find frequency

C+ denotes pseudoinverse] ependent part K, o(w)

35
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Step la) Find Ko

STEP 1A: Find K

Ko  K(O) )s.) K(aj)
G. (O) = i = 1,2,... ,rRo.= K2 J = 1,2, ....

K- 0 K=1 WKKo GTOT

KLX * ¢KL2 + 'KLZ "-"rjj 2 O K a )....-TI

K=1 K

This equation has many solutions. Choose solution
with minimum norm using singular value decomposition.
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- Step 1b) Find K(z)

STEPISFidas

K(s) a c(s) Ko

Find a(wi ) to scale resultant transfer function

-gi OULX + OiLY ' OiLZ

Find positive singular value of transfer matrix
c aCK(O) G(wi)D at the frequency wi

* Approximate series of gains a(w.), i =1,...,n
by a realizable filter a(z).

siTJ

Resultant squaring filter

K(z) ctz K

Proed to STEP 2
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2.3.4 Lockheed's LAC/HAC design.[10]

2.3.4.1 Objective. Develop a technique that eliminates instabilities
created by spillover. Summarily stated, spillover is the interaction of the
controller with unmodeled modes. The control design must cope with poorly
known high frequency modes by not destabilizing them while controlling the
low frequency modes.

2.3.4.2 Properties of technique.

(a) Robust performance

(b) Suppression of spillover

2.3.4.3 LAC/HAC approach.

(a) HAC - modify the structural mode shapes and modal damping with
the HAC estimator and control law.

(b) LAC - incorporate LAC control law to reduce spillover insta-
bility created by HAC controller.
LAC design is based on a higher order model than HAC design.

2.3.4.4 Theory: LAC/HAC is a design method which meets the objective.

2.3.4.5 Definition.

(a) Spillover: interaction of the controller with unmodeled modes O

2.3.4.6 Lockheed's Low Authority Control/High Authority Control (LAC/
HAC) design procedure applies a two-level approach to LSS control system
design. The first level involves HAC design, which incorporates a narrow
band and high damping to meet performance requirements. The concept of using
a frequency-shaped extension of the LQG method is presented. The second
level involves LAC design, which incorporates a wide band and low damping to
eliminate spillover induced instabilities.

10. "ACOSS Five (Active Control of Space Structures) Phase IA," Lockheed
Missiles and Space Company, Inc., Sponsored by Defense Advanced
Research Projects Agency, Report No. RADC-TR-82-21, March 1982.
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Implement the following four steps to design a LAC/HAC controller:

1) HAC design
2) Spillover evaluation
3) LAC design
4) Stability, performance evaluation

LAC/HAC design
two-level approach

STEP 1: High Authority Control (HAC)
Design. (Narrow band, high damping)
Use frequency-shaped extension of

1 LQG methods

HAC MODEL UNCERTAINTY IN
BANDWIDTH HAC CONTROLLER

DUE TO MODES" / .t OUTS IDE MAC"

DAMPING ACOH
RATIO / BANDWIDTH

FREQUENCY

STEP 2: Evaluation of Spillover.
Effect of HAC controller on modes
not used in control design may be
destabil izing.

6l

continue
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continue -

STEP 3: Low Authority Control (LAC)
Design. (Wide band, low damping)
solves destabilization problems
created by HAC.

1 I .LAC MODEL BANDWIDTH1

DAMPING[ -" ~ A -

RATIO FREQUENCY

STEP 4: Stabilit andEl ti
Performance Eval uai

Result: Stable system which handles
Spillover (i.e. interaction of the
controller with unmodel ed modes)

t INTEGRATED
DAMPING "A A DESIGN --

RATIO HCLCDSG

/UNCERTAI NTY REGION

FREOUENCY

40



Step 1 in LAC/HAC design.

The HAC design uses a standard LQG controller and applies optimal control
. and estimation techniques to develop the HAC control law. The concept of

frequency shaping the performance index (PI) may be applied to:

i) Avoid spillover - high frequency spillover, in the case of LSS
ii) State estimation - minimize the problem of interaction of unmodeled

high frequency modes with the estimation of low frequency states
* iii) Disturbance rejection - minimize the effect of a disturbance at a

particular frequency

Control Model of System

c= FcXc + Gcu Performance Index

y =Hcxc  J lim xT' + uTBu dt

Find Optimal Control Gain Matrix, C .

1) Solve algebraic Riccati equation
for 0

FTR + RoFc - RoGcB -GcTRo + A =0
* ~~c o0 c o

2) Solve for Cc

Cc = -B'G TR •

cc B c Ro I
-HAC Cntrl Law-

* "

4coninue

41.



State Estimator Equations:
A A
xc = + G u +K(y -H x)

1) Find P,Q

v = input noise vector
w =measurement noise vector

TE (v(t)v (t + T)) = Q S(T)
T

E (w(t)w (t +* r)I = P 6(r)
2) Solve algebraic Riccati equation

0 F TR +RF R.4cTPIH R + GQG T

3) Solve for K

Apply frequency-shaping methods
in the following three areas as
nece~sary:

1) Spillover Avoidance

2) State Estimation

3) Disturbance Rejection

.4Spillover Avoidance State Estimation Disturbance Rejection
in HAC design in HAC design in 9AC design

10 20
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Frequency shaping the performance index to avoid spillover.

The fundamental idea of frequency shaping is to provide minimum control.-
authority at the unmodeled modal frequencies. The state and/or control
weighting of the performance index are modified to be appropriate functions -- _

of frequency. An increased penalty in the LQG cost functional is placed
where less response is desired. For example, to reduce high frequency
spillover, the state weighting is modified to be a decreasing function of
frequency and/or the control weighting is modified to be an increasing func- "
tion of frequency. The objective is to penalize the low frequency states (to
impose limitations on state magnitude) and/or to penalize high frequency
control power (to avoid placing controller energy at high frequencies).
Additional states must then be defined to implement the frequency shaping and
are included in both the control law and performance index.

43S
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Inject minimum control power aL
S "natural frequencies of unmode 1 n
State /eighting modes. Modify either state Control Weighting

~jc) weighting or control weighting B(j3)
Sof performance Index. 0Type of J = ,imI f(x T Ax + HTBu) dtLTyeo

.T_ spillover?I

hi atcular particular

frequency mode mode

to reduce high- to avoid t vi ih
frequency spill - exci ting exci ti ng frequencyI

over, modify a particular a particular
A(jw) to be a mode at wo at wo
decreas i ng
function of to reduce highl-
frequency frequency spil1l-
[ie. A(jw)= -LA] ver, modify

W2 .(jw) to be an
Increasing function
of W 2w

.e. B(jw)= ° B]

Modify A(jw): Modify B(jw):
1A(w)= =" Z = A BOW )= 1 B
A(jca4=(w2 - 14 ______ T.

Additional states, x are Additional states, U are
defined to implement defined to implement 0
frequency shaping(STEP 1A) frequency shaping(STEP 1A)

Perf. Index becomes Perf. Index becomesI -- Tir j rTA + uTBu dt = Ii T xTAx + UTBiti dt i •

T- ,. T

Control Law:
u -Cx + C2 7

1 RESULT: Spillover has Io
|fO _been avoided I

44
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State estimation in HAC design.

Problem: Estimation of low frequency states when high frequency modes are
not modeled.

Frequency shape R (while Q remains unchanged), since all errors associated
with modal truncation are incorporated in measurements.

20

20d

State Estimation
in HAC design

Modify R so that R(jw) is"
an increasing function of
frequency. W2+w 0
i .e. RCN)= -, R

Define additional states, i
and y (equivalent to adding
v) to implement frequency-
shaped R. (STEP 1A)

-

RESULT: Solved problem

of model invalidity at
high frequencies.

45
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Disturbance rejection in HAC design.

Problem: Minimize effect of disturbance on output y. The disturbances attenu-
ated in this type of disturbance rejection include disturbances at a partic-
ular frequency, wo.

Include additional term in performance index, J1.

30

Disturbance Rejection
in HAC design

Include J In perf. index:
J = limiT JI + XTAx + u TBu dt

T T
where J 1 2-2) Ay = yT A(jw)y

A(Jw) AC
note: output penalty goes to - at W

Implementation requires
| definition of additional

states, (.(STEP 1A)

The perf. index becomes:

= i * xA + XTAx + uTBu dt

Control Law:

u=ClX + C2

RESULT: Minimized effect of
disturoance on structure.

46
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Step la in LAC/HAC design.

Define additional states required to implement frequency shaped performance
index.

STEP IA: .

Definition of additional
states needed to implement
freq.-shaping of LQG cost
functional.

State weighting Control Weighting

Find PI(jw): Find P2 (jw):

A(jw) = PI(j)P(jw) BOW) P2(jw) 2(jw) _

IfI

Define aaditional Define Additional I
states x: states u:

P1Jc ) x P2(jw)u u

Control Law: Control Law:
C + C defined in above
1 2x step

0 Performance Index.: Performance Index:
T _T - T TT -

Jlim xTAx + uTBu dt i lim xTAx + uBu dtT-- T-'

RESULT:
definition
complIete

47
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Step 2 in LAC/HAC design: Spillover evaluation.

Test HAC control law on large order model.

STEP 2: Spillover
Evaluation

Test the HAC Control Law on the
evaluation model of system
(Evaluation model is one of large
order - i.e. 40 or more modes)
The degree of spillover due to
HAC will be used to determine
the LAC damping ratios needed
to prevent spillover instabilities.. 0

Proceed to

STEP 3

Step 4 in LAC/HAC design: Stability and performance evaluation. 0

Test HAC/LAC control law on large order model and examine output.

STEP 4: Stability and
Performance Evaluation

Test combined HAC/LAC Control I
law on evaluation model.
Examine closed-loop dynamics:
is = F s X s + 's w

y Hs Xs _

s denotes closed-loop system

w = disturbances
y = vector defining performance

Stability is evaluated by
computing eigenvalues of Fs .

48
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Step 3 in LAC/HAC design: LAC design.

The LAC design procedure develops a LAC control law which generates
closed loop system root shifts. The introduction of the LAC control system - -

produces root shifts into the stability domain. The root shifts, which can be - -
predicted algebraically, are used to derive the fundamental root shift for-
mula of LAC design. A cost function involving predicted root shifts and
desired root shifts is minimized to determine the LAC control law.

4

E9

I

"S

'C~
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STFP I- "

LAC Design

The determination of the matrix
of the damping gains, CL (where

u = CLY) is the synthesis of LAC

systems. C [Ci .
L [Carl

Find (d) p - predicted root shift
n p

Derivation of LAC formula to algebraically
predict root shifts produced by introducing
the LAC Control System.

System Equations:

* Dynamics : x = Fx + Gu Closed Loop Dynamics
Sensors : y = Hx (F+ GCLHIx
Controls :u = CY L

For small controls, CL

GCLH = dF

The dynamics become:

(F + dF)x

*Fundamental Root Shift Formula*

d X 2 E C (P AR
n - ., ar an Arn

X= nth root of F

d)n = root shift corresponding
to dF

Lno Rn = corresponding left,
right eigenvectors
of F

[i.e. FTL L, FR X R
n = no n =n nJ

A T RCn : Tn nR  n:GLH*n "HR

4I

Continue
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ThN--

structure undamped ?

yes

Root Shift formula educes to:
dX n = .Car~ an~ rn t

an r = values of the n mode
shape at actuator a, sensor r.

I Are sensors and actuators
colocated (a=r) ?

yes

Root Shift formula reduces to:

note: root shifts toward left
of jw-axis if all gains are
negative

Determine C:
* CL is found by minimizing the

cost functionrdx 2
J(C) n ( di n) p - WX I~ 2 + r Car

(dxfl )C desired root shift

*~ ~ =4. modal weights

note: (6A,)DI U, are adjustable

synthesis parameters

Elements of matrix C are calculated
by solving the linear equations:

MY L
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2.3.5 General Dynamic MESS design.[ll]

2.3.5.1 Objective. Stabilization of control model, attenuating effects
* of control and observation spillover, and model errors caused by truncation .__-6

of known high frequency residual modes.

* 2.3.5.2 Overall approach. General Dynamic's Model Error Sensitivity
Suppression (MESS) design procedure involves an extension of optimal control
theory with standard LQG controller topology. MESS uses the performance
index to constrain sensitivity to modeling errors.

2.3.5.3 Properties.

(a) Algorithm only provides solution to the problem of known model
truncation

(b) Low sensitivity to modeling errors

2.3.5.4 Definitions.

(a) Control spillover: excitation of uncontrolled modes by con-
* troller

(b) Observation spillover: sensing of uncontrolled modal responses
by observer

I

11. "ACOSS One (Active Control of Space Structures) Phase I," General
Dynamics, Sponsored by Defense Advanced Research Projects Agency,

.. * . ..

* --.--. -. . *

Report~~~~ No ."CT-8-9 Mach190
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Model Error Sensitivity Suppression.

The design procedure consists basically of the 4 following steps:

1) Design optimal regulator .
2) Design state estimator
3) Evaluate spillover
4) Apply MESS algorithm and redesign regulator, estimator

53J
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II

MESS
model error

sensitivity suppression

STEP 1: Design optimal regulator
with zero spillover suppression.
[this checks severity of spillover
problem]

STEP 2: Design state estimator
with zero spillover suppression.

STEP 3: Test controller/estimator
on design model. Evaluate spillover.

no
sspillover a proble?

yes

Aly ESS Agoithm

Redesign regulator ":
usinq restructured

performance index.

Redesign estimator using -
res tructured performance -,-
index. (Apply STEP 2) --

RESULT: Design with

acceptable spillover
level

54
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Step 1 Design optimal regulator.

Standard LQG control methods are used to design the optimal regulator and
state estimator. Using the alpha-shift technique, the selection of PI
weighting matrices is reduced to a choice of scalar parameters.

STEP 1: Design optimal
regul ator.

System Equations:

Linear System: x=Ax + Bu

Performance Index: J = fT 0 x + UT dt St

Choose performance index i;-ighting
* matrices Q and R. The alpha-shift

technique may be employed to reduce
selection of Q, R to choice-+. pf
scal'ar parameters.

Find optimal control gain matrix, K
such that the control law becomeso A
u Kx

1) Solve algebraic Riccati equation
for P

A PA - PBR IP + Q

2) Calculate gain matrix, K

K -R IB T P

RESULT: Control Law
has been designed. t

55
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Step 2 Design state estimator.

Standard LQG control methods are applied to design the state estimator.
The system model is then tested for spillover and if spillover is a problem,
the MESS algorithm is applied.

STEP 2: Design state
estimator

State Estimator Topology:,0

a 0.

v = input noise -..
State Estimator Equations: w = measurement noise

BT

u =K E (w( ~ (t + t)) - S8(t)

Find state estimator gain matrix, G

1) Solve Riccati equation for P
+PA + pcs-cP + 80BT = 0

*2.) Calculate G 0
G = pCTS" n

RESULT: State Estiator 

56 +
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A fundamental concept behind the MESS algorithm is to restructure the
performance index (PI). Initially, the PI is a function of controlled and

suppressed states, and the control vector. Singular perturbation is forced
in the suppressed state model, and the resulting expression is substituted
into the original performance index.

MESS Algorithm

Restructure the performance index

X T xcQcXc + xsTsx + uTRou dt

C= xcontrolled

xs =Xsuppressed

where

ic = Acxc + Bc -

is AsXs + Bsu

Force singular perturbation

set Xs = 0

0 AsX s + B u xs =-As-Bgu

Substitute =s -A s-6 u into J
40 TQcxc + uT[Ro T B)T 0A5 1Bs]u dt

This is the restructured performance index. .

RESULT: Restructured
perf.. index found.

57
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The restructured PI is now used with optimal control techniques to redesign
? the regulator and to determine the modified control law.

Redesign Regulator

Find Optimal Control Gain Matrix, K

1) Solve algebraic Riccati equation for P

AcTP + PAc- PBc[Ro + B T(A- A)TOAsB ]-'BcTP = 0

2) Calculate K 0

K = [R + BsT(AsI)TQsAs-Bs]-BcTP

*l c

RESULT: Regulator design
based on restructured
performance index.

58S
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2.3.6 Conclusion.

2.3.6.1 The LSS control techniques discussed include Lockheed's LAC/HAC,
TRW's Positivity, and General Dynamic's MESS. Although each approach is
observedly different, each technique employs the same objective, optimal per-
formance when presented with an inaccurate plant model. Each technique
addressed the problem of the destabilizing effect of uncontrolled modes on
the system. TRW concludes that application of the positivity theorem to LSS
assures stability (i.e. system will not become unstable due to oberservation
and control spillover effects.). In addition, positiviity more indepthly
(than LAC/HAC or MESS) examines the problem of non-colocation and inclusion -
of actuator and sensor dynamcis. Lockheed concludes that the LAC/HAC algo-
rithm eliminates spillover instabilities through the application of frequency --

shaping. General Dynamics concludes that MESS solves the problem of known .
modal truncation through restructuring of the performance index. •

2.3.6.2 An orderly flowchart format of each technique's control law
design procedure is extremely helpful when comparing and considering develop-
ment of the control schemes. The flowchart helps one draw conclusions about
the practicality of each technique in the situation of LSS.

59S
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2.3.7 Activities Participated In and Conducted Relative to the Evalua-
tion of ACOSS Control Methodologies. During the February 1982 - February
1984 period, Control Dynamics senior personnel collaborated with counterparts
of other organizations at the meetings and conferences listed. Their active
participation contributed measurably to the objective, in-depth evaluation of .
control methodologies presented in this section.

Control
Meeting Topic Dynamics
Organization Date Location Participants

1. Power Spectral Density March 15, 1982 Cambridge, MA Dr. Seltzer
Model Dr. Doane
Draper Laboratory

2. Stochastic Approach March 16, 1982 Lexington, MA
to Model Development
Lincoln Laboratory

3. JOSIE Program March 16, 1982 "
Draper Laboratory and
ITEK

4. Large Space Structures April 30, 1982 MSFC, AL Dr. Seltzer
Program
Marshall Space Flight
Center

5. ACOSS Methodology June 2, 1982 Riverside Dr. Seltzer
TRW Research
Draper Laboratory Arlington, VA

6. VCOSS Methodology June 16, 1982 Wright- Dr. Seltzer
Lockheed - Palo Alto Patterson

AFB, OH

7. VCOSS Methodology June 17, 1982
TRW

8. ACOSS Methodology June 29, 1982 Riverside Dr. Seltzer
. Minneapolis - Research Dr. Doane
Honeywell Arlington, VA

9. Power Spectral Density June 29, 1982 Riverside Dr. Seltzer
Model Research Dr. Doane
Draper Laboratory Arlington, VA

10. Spacecraft Disturbances June 29, 1982 .
Control Dynamics

60

*



Control
Meeting Topic Dynamics
• Organization Date Location Participants

11. Workshop on "Application July 14-16, Pasadena, CA Dr. Doane
of Distributed Systems 1982
Theory to the Control
of Large Space Struc-
tures"

• JPL

12. Guidance, Control, and August 9-11, San Diego, CA Or. Seltzer
Dynamics Conference 1982 Dr. York

* AIAA

13. ACOSS Phase II Final September 23, Palo Alto and Dr. Seltzer S
Technical Review 1982 Sunnyvale, CA

• Lockheed

14. ACOSS Final Technical December 16, Los Angeles, Dr. Seltzer
Review 1982 CA
TRW 0

15. LAMP December 20, Lexington, MA Dr. Seltzer
ITEK 1982

16. LAMP December 21, Danbury, CN Dr. Seltzer

• Perkin-Elmer 1982

17. Structural Control of January 20, Hughes Corp. Dr. Seltzer
Deployed Optical 1983 Los Angeles, Dr. Worley
Systems CA
SPIE

18. VCOSS - I Final Review March 8, 1983 Wright- Dr. Seltzer
Review Patterson
Lockheed AFB, OH

19. VCOSS - I Final Review March 9, 1983
. TRW S

20. Guidance and Control August 15-17, Gatlinburg, TN
Conference 1983

AIAA

21. 9th Strategic Symposium October 4-7, Monterey, CA
DARPA 1983
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2.4 Task 4 - Determination of Optimal Form for ACOSS Controller

2.4.1. Introduction. The determination of an optimal form for the
ACOSS model is the subject of the work presented here. The structural model L_-_ -*
used was developed by Control Dynamics under the ACOSS/VCOSS program. The
emphasis on the control system design was primarily one of simplicity. The
idea was to keep the design as straightforward as possible and to increase
the level of complexity of the design as well as the fidelity of the model
as more knowledge of the control problem was determined.

The control scheme used here involves using the frequency domain design
tools to design a two loop digital control system. The initial design of the
inner loop is performed to design a tracking notch filter by phase stabiliz-
ing the unstable outer loop bending modes, and gain stabilizing all other
modes. After the inner loop is closed and cascaded with the outer loop, com-
pensation is then derived to stabilize the outer loop. This design technique
has shown that it is possible to retain an appreciable bandwidth while
suppressing vibrational modes and disturbances.

2.4.2 Control Law Formulation. The preliminary control law developed
for ACOSS model #2 is based on one sensor actuator pair. For attitude con-
trol of the structure, a torque actuator was placed between the equip-
ment section and the optical truss. An accelerometer package is needed at
the equipment section to sense translational motion. Finally, a sen-
sor is needed at the focal plane to detect errors in the line of sight (LOS).
A planar model of the ACOSS model #2 in the y-z plane is shown in Figure 4-1.
The input actuator in the model is a torque actuator located along the
z-axis midway between the optical truss and the equipment section. The
accelerometer measurement will be used to construct the inner loop notch
filter.

The block diagram of the control system for the planar model shown in
Figure 4-2 includes one disturbance input and one control input. The sensors
are an accelerometer at node 46 in the equipment section (inner loop)
and the focal plane error (outer loop).

The multi-loop control scheme has been applied in the design of control
systems for large flexible structures of the DARPA type. In the next section
the design technique is illustrated by way of an example. S

2.4.3. Multi-loop Design Technique. The multi-loop design technique
developed for DARPA is illustrated here with an example. The block
diagram of Figure 4-2 will be used where the modal data is given in Table .

4-1 (Figure 4-3).

The design procedure is initiated by computing the outer loop frequency
response and determining which modes are significant. Using block diagram
algebra and Mason's Gain Formula the uncompensated outer loop transfer func-
tion is given by

62

K .. S



.__ - r , r , a , , '- . - . . ' ' ' - .- " . . . . . .. - "_ "- , .. ,- - - _ ,

1 0

DISTURBANdCE INPUT 10
NODE 137 .

2L

OPTICAL 1
TRUSS

] - ISOLATOR
21

2.3 2 -'-SOLAR PANEL
" CONNECTION POINT

- EQUIPMENT
DISTURBANCE INPUT 10 SECTIO-

NODE 146

ALL DIMENSIONS IN METERS
NODE 137 (-4.-3,24)
NODE f46 (-4.-S,-.3)

II

Figure 4-1. Y-Z Planar Projection of ACOSS Model #2 (Solar Panels Omitted).
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il7"

%[GOL(S)]= ApAa GIC(z) 4 .{Gpo(s) GHO(S) F(s)} (4-1)

where

FGH21 G12H22  N Gii + 2 H2 + 2

F(s) 2 + S2 + 2 2
5 i=1 s + 2 "nis + wni

where Gho(S) is the transfer function for a zero order hold, Ap is the outer
loop gain constant, Aa is the inner loop gain constant, GIC(z) is the z-do-
main closed loop transfer function of the inner loop between the output of
the outer loop compensator GCO(Z) and the input to the block labeled Aa, is
the modal damping ratio for each mode and is assumed to be 0.5%, Uni is the
undamped natural frequency of the ith mode, G11 H21 and G12 H22 are the rigid
body modal gains for the outer loop, G1i+2 H2i+2 is the modal gain of the ith
bending mode of the outer loop where i=1, 2, . .. , N. The closed loop
transfer function of the inner loop is given by

1
GIC(z) = (4-2)

1 - Gci(z) 4- [Gio(s)]

where G[o(s) is the uncompensated open loop transfer function of the inner
loop, given by

SG11H11 G12H12
)- [GIo(s)] = Aa 3-{GpI(s) Gho(s) s + (4-3)

N Gli+2 Hli+2 1
+ .

2  2
i=1 s+ 2 wniS + u;2ni

and GCI (z) is the inner loop digital compensation. The frequency response
of the uncompensated outer loop in Equation (4-1) was computed using the
sampled-data frequency domain computer-aided design tools and is shown in
Figure 4-4. The response shows that only the first bending mode (56.495
rad/sec) is significant. Hence, the inner loop will be designed such that a
notch occurs at the frequency corresponding to the first bending mode.
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UNCOMPENSATED OUTER LOOP

Ca1i7.5

0

I F

-610 2 a *j0 4 a i 4 a a

FREG (RAO/SEC)

UNCOMPENSATED OUTER LOOP

120. -

Li

0
IUl -30.o0C

1 2 'o 2 0 4 o ? 4 6 5 a
FREQ (RAO/SEC)

Figure 4-4. Frequency Response of the Uncompensated
Outer Loop (Inner Loop Open)
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2.4.3.1 Inner Loop Design. The frequency response of the uncompensated
inner loop is shown in Figure 4-5. The response shows that the first and
fifth bending mode basically determine the stability of this loop. The outer
loop response has shown that only the first bending mode is significant in
that loop. Therefore, the compensation for the inner loop will be
designed to phase stabilize the first bending mode to preserve the peak so
that when it is closed a notch will occur at this frequency. The fifth
bending mode will then be gain stabilized. A two stage digital compensator
that will achieve these specifications was designed using the direct z-domain
analytical design technique. The compensator is given by

GCI(z) = GC11(z) • GC12 (Z)

where (z + 1)2

GC (z) = 2 (4-4)
31.25581 z- 46.67205z + 19.41624

and

6.0085z - 4.0085 0
GC (z) = (4-5)

8.9159z - 6.9159

The first stage is an underdamped second-order dominant pole compensator
with a damping ratio of 0.6 and a break frequency of 40 rad/sec. It was
designed to phase stabilize the first bending mode by contributing -120
degrees at a frequency of 56.495 rad/sec (the frequency of the first bending
mode). At higher frequencies the gain of this compenator continues to
decrease and therefore serves to gain stabilize the fifth bending mode
(198.554 rad/sec). The second stage is a digital lag compensator designed to
provide sufficient gain margin at a frequency of 31 rad/sec. The frequency
response of the compensated inner loop, magnitude and phase, is shown in
Figure 4-6. The response shows that the loop has two gain and two phase
margins:

GM1 = 6 dB @ 32 rad/sec
GM2 = 31 dB @ 130 rad/sec
PMA = 50* @ 45 rad/sec
PMB = 800 @ 62 rad/sec

Further observation indicates that the magnitude and phase of the com-
pensated inner loop response at the frequency of the first bending mode are

M I = 28 dB

P'I = -10°

68



UNCOMP. INNER LOOP

430.00

n7. --- 9

15 - - - - .

IOU a 10 2 8 °U -2"

.00

C69

<- . ~ ~ .- --- - - -

- 1

UNCOP. NN, LOOP

-=70. - -_-

-1g. - - -- -.-.-

4\01,
FRE-(AO/EC

Figue 45. Fequncy espnseof te Ucompnsaed InerLoo
Sm

-- r-.9

S.
10 •o10 , OlC, s 1 S



COMP. INNER LOOP
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Figure 4-6. Frequency Response of the Compensated Inner Loop
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which shows that this mode is in fact phase stabilized. The magnitude of the
response at the fifth mode is

Pw5 = -10 dB

which also shows the fifth bending mode to be gain stabilized. Finally, the
closed loop response for the compensated inner loop is given in Figure 4-7.
This response shows a notch occurring at the frequency of the first bending
mode. With the inner loop compensated and closed, the design of the outer
loop follows.

2.4.3.2 Outer Loop Design. The frequency response of the outer loop
with the compensated inner loop closed is illustrated in Figure 4-8. Com-
parison of Figure 4-8 and Figure 4-4 shows that the inner loop notch has pro-
vided some desirable attenuation of the first bending mode.

Sketching the Nyquist plot of the outer loop shows the loop to be
unstable. Analysis of this response shows that phase lead will stabilize the
system. Thus, compensation for the outer loop will be designed to stabilize
the system, and maximize closed loop bandwidth. Again using the analytical
frequency domain compensator design technique, the compensation necessary to
stabilize the outer loop was determined to be:

GCO(z) = GC2 1(z) * GC22 (z)

where
(200.9983z - 198.9983) (z + 1)

GC (z) =132.6555z 243.58133z + 114.92579 (4-6)

(z + 1)oGC2(Z) = (4-7)
8.36235z - 6.36235

where the first stage is a lead-lag compensator and the second stage is a lag
type compensator. The Bode plot for the compensated outer loop is shown in
Figure 4-9. The response shows that with the compensation previously derived
the following stability margins were achieved: -

PM1 = 330 @ 8.2 rad/sec

GMA = 7.5 dB @ 12.6 rad/sec

GMB = 5.2 dB @ 34 rad/sec. S

The computer-aided design tools make it a relatively simple task to compute
the closed loop frequency response of the system. This response is shown in
Figure 4-10. The plot shows the bandwidth to be approximately 12.6 rad/sec.
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Figure 4-7. Closed Loop Frequency Response of the I-
Compensated Inner Loop
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Figure 4-8. Frequency Response of the Uncompensated
Outer Loop (Inner Loop Closed)
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2.4.4. Summary of Design Technique/Tools. The application of the com-
puter aided-design tools to dosign a digital control system for a class of -

Large Space Structures has been demonstrated. It has been shown that the
design tools reduce the computational burden associated with the design pro-
cess. The tools have been designed such that the model can assume as many
bending modes as necessary.

The form of the control system for the DARPA Structure has been devel-
oped. The preliminary analyses show that it is possible to design the system ""
with a bandwidth that actually extends beyond the frequency of the signifi-
cant bending modes. Sensitivity studies indicate that the multi-loop design
technique is also "robust" relative to variations in modal data. In the
example given in Section 2.4.3, modal frequencies were varied from - 10% and
-+ 20% of their nominal values. The results showed that the system response
was reasonably stable up to - 20%.

,76

, 0

I 'S

* S

76

S



p 6

2.5 Task 5 - Investigation of Structural Damping Models. Early in the
performance of this task, it became obvious that the work and results were so -

closely related to that of Task 2 - Extensions of Modeling Techniques, that
it was considered appropriate to report the monthly progress made in the two
tasks under the Task 2 heading. To provide the reader and potential user of
the results a comprehensive presentation and discussion of the work in the
area of LSS modeling techniques and structural damping models, the work and
results relative to this task are contained in the Task 2 section (2.2) in
this report.
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2.6 Task 6 - Implementation of Component Cost Analysis.

2.6.1. Introduction. The mathematical models of physical systems which
are to be controlled are usually reducible to a linear form. The standard
methods of control design assume this as a starting point. These models are
frequently of very large dimension such that it becomes impractical to employ
them directly in the design process. Because of this, analysts and designers
usually work with a truncated or reduced order model. The methods for reduc-
ing the order of a high order system model are a part of the folklore of the
designers' art in the field. Thus, each individual analyst may well have his
own pet technique for accomplishing reduction. Of course, in the final anal-
ysis it is the performance that is the proof of any design, and the analyti-
cal exercises become merely the means for establishing the preliminary design
which is then confirmed only after an extensive test program involving as
much of the actual hardware as can be obtained. However, the lighter weight
aerospace structures are becoming less amenable to ground based testing prior
to flight due to the reduced tolerance to the 1 G earth environment. These
factors have motivated this look at two of the techniques that are currently
being used to guide the modal truncation process.

2.6.2 Discussion. The typical mechanical system can be modeled by a
2nd order, vector-matrix differential equation. Using a vector q of genera-
lized coordinates to represent the system configuration, we can w- ite

Mq + Cq + K2  = Bw (6-1)

C y= P'_q + Pq (n x 1)

MT =M;

KT = K;

M and K are symmetric matrices,
M is positive definite,
and K is nonnegative definite.

We have used the vector y to represent the set of variables subject to
measurement and assumed that they are linear functions of system coordinates
or velocities which are not otherwise observable in the physical system.
Matching physical measurements with analysis results consists of comparing
values of y. Acceptability of this match depends on whether the values fall
within therequired tolerances. If we let Y represent the measured values
and y the analytical values, then we can writT the requirements as

lyi - YiI < ri (6-2) 0

These requirements represent the degree to which we desire the physical
model to match the mathematical model. Frequently, the mathematical model is
too large at this stage to be used conveniently or economically. For this
reason, truncation procedures which can be applied to the mathematical model
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to reduce it to a more convenient size while giving a measure of the degree
of error incurred in the process are desirable. Several methods exist for
doing this. We shall discuss two of them. The first method which we shall
discuss is called Modal Cost Analysis (MCA) and is taken from "Modal Cost -

Analysis for Linear Matrix-Second-Order Systems," R. E. Skelton and P. C.
Hughes, Journal of Dynamic Systems, Measurement and Control, September 1980,
Vol. 102-pp. 151).[12] This method treats the problem of truncation from
either of two viewpoints which result in the same truncation criteria. The
second method does not hive a name but, for convenience let us refer to it
as Old Tried and True (OT ). Both approaches (MCA and OT ) begin with a cost
function defined in terms of the system measurement vector y. The term cost
function is used here in the mathematical sense and arises -from its similar-
ity to such usage in the theory of extremization as in the Calcu'>s of
Variations. For MCA, the cost function is for the analyst to define within
the usual restrictions for cost functions, i.e., it must be positive defi-
nite. It is desirable to select a cost function that provides a "good"
description of model errof. The meaning of "good" must be left for the ana-
lyst to define. For OT , the term cost function is used simply for com-
parison with MCA. It should more appropriately be called the "modal peak
function" since the values are the modal peak amplitudes on the output
response curve. The MCA approach is statistical in nature and requires that
certain assumptions be made concerning the nature of the disturbance vector
w. First, any deterministic disturbances are assumed to be absorbed into the
-Jifferential equation so that the remaining disturbance w is stochastic in
nature. Second, w is uncorrelated in time and has zero mean. Thus,

E (w} = 0 (6-3)

E {w(t)w(T)T} = 6(t- T) (6-4)

The system equations given in Equation 6-1 can be transformed to modal
variables, coordinates such that

q = On (6-5)

OTM4 = 1 (6-6)
212 '  2 2)

TK¢ = A2  = diag (wl 2, ... wn 2 (6-7)

Under this same transformation the damping matrix C is transformed to the __

matrix D.KTCO = D. (6-8)

Frequently, for mechanical systems such as aerospace structures which
are lightly damped, it is sufficient to approximate the matrix D by a diagonal

12. Skelton, R.E. and Hughes, P.C., "Modal Cost Analysis for Linear
Matrix Second Order Systems," Journal of Dynamics Systems,
Measurements and Control, September 1980, Vol. 102 - pp. 151.
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matrix. Thus, we shall henceforth treat D as a diagonal matrix. It is con-
venient to express this diagonal D matrix in terms of the fraction of criti- -7
cal damping, the diagonal matrix

D = 2A (6-9)

Using Equation 6-1 together with t-5 through 6-9, we obtain the so-called
modal equations

2n + 2CAn + A n =' w (6-10)

y ' +-n

These equations then become the working equations for modal cost anal-
ysis. We must now construct a useful cost function which shall become the
basis of our modal truncation considerations. Ideally, we desire a cost S
function based on the model error components as in Equation 6-2. It is
tempting to define a modeling error "cost" function V in terms of the dif-
ference y - y, where y is computed from the original, large dimensional sys-
tem model as-given ffn Equation 6-10, and y is computed using a truncated
version of Equation 6-10 in which certain modal coordinates are dropped from
consideration as being relatively unimportant in their effect on y. The S

determination of this relative importance is what this study is alT about.
For now, we shall define the cost function in terms of the measurement vector
y only

V lim E {yTQYI (6-11)

QT : Q and Q is positive definite.

We shall show later that maximizing the cost V of the truncated system has
the effect of minimizing the model error introduced by truncation. In Appendix
B it is shown that for lightly damped, mechanical systems such as described by
Equation 6-10, the cost function V can be separated into a sum of terms each of
which depends only on a single mode. These terms are referred to as modal
costs. Thus,

V = Iva; Va depends only on mode a and Va > 0. (6-12)

These modal costs then become indicators of the relative importance of
the particular mode in V and hence in the model error. The differential
equations shown in Equation 6-10 which determine the model displacements n

are an uncoupled set of n 2nd order differential equations driven by time-
dependent disturbances. This implies that the individual modal responses are
unaffected by truncation. Since this is the case and since the cost function
is decomposed into modal costs depending only on the modes separately, the
effect of trunca is to reduce the total cost by the sum of the modal
costs over the tru. _ted modes. This sum, then, is indicative of model trun-
cation error. If the modes are arranged in descending order of the modal
costs such that the lowest order modes have the largest effect on the cost V,
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then it is the high order modes that become the candidates for truncation
from the reduced order model. It is possible that some modes have zero costs
and can be safely truncated from the model with no ill effect on the cost.
This is not to say that there are no effects on the model results, but only -.
that the effects of such truncation do not noticably change the system mea-
surement or output vector y. Or in other words the physically measurable
parameters are not significantly changed as a result of this truncation.
Perhaps this can be viewed in a different light if we consider that the sys-
tem configuration requires n coordinates for its specification, but we are -.

only measuring n quantities in y and thus there is insufficient information I ,
to uniquely specify the system -state from the measured data. The modeling
philosophy being employed in the modal cost analysis technique holds that the
only important model parameters are the mathematical counterparts to the phy-
sical measurements, i. e., the outputs y.

In order to gain insight into this method let us consider its applica- 1 .
tion to a relatively simple example. At the George C. Marshall Space Flight
Center in Huntsville, AL, personnel from NASA and Control Dynamics are devel-
oping a large space structure ground-based pointing control experiment and
related facility. We have developed a model of this which will serve us
here. The system is illustrated in Figure 6-1.
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Figure 6-1. Illustration of NASA/MSFC Large Space Structure Ground
Based Pointing Control Experiment.
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The simplified, planar model of this system consists of the x-transla-
tion of the base, y axis gimbal rotation at G2, the first 3 cantilever modes "
of the astromast treated as a simple beam and the x-translation of the gra-
vity compensation mechanism. This yields a 6 degree-of-freedom model. The
choice of three cantilever modes to represent the beam was the result of an
intuitive truncation process in which it was felt that the modal frequencies
of the higher beam modes were not likely to be excited. This truncation pro-
cess should probably be revisited but for purposes of this example it is not
required. Since we are currently refining our model of this system we have
refrained from any refinements of this simple model. The modal version of
this model is given below.

ni + On1 + O1j = [.09451, -.006146]w (6-13)

+2 + 0;2 2 = [-.8976, .0017783w

n'3 + .020469n3 + 4.1897n3 = [-.1379, .0076401w ' 0

"14 + .05885;4 + 34.64n4 = [-.6993, .0401551w

W5 + .2266n5 + 513.3n5 = [-.2475, .016131w

n6 + .6825;6 + 4658n6 = [-.06957, .0052511w ,

y = [-.006152, .001776, .005918, -.02791, .1022, -.1773]n

E {wwT} = 6(t- T) = aT(t- T)

For this case we have only a single output so we let Q = 1. In Appendix B,
it is shown that the modal cost function is

VP I -TQ -'--w 2 + T . (6-14) 
3

Using Equation 6-1, we compute a modal cost vector (column MCA of Table
6-1) and suppose we choose to select the three most significant modes with
which to analyze this system. First, we note that the two zero frequency
modes have an infinite modal cost and thus must be included in the reduced
model. Thus, we are left with selecting an additional mode from the remain-
ing four.

Under the MCA selection criteria, we select mode 4 to keep since it has
the largest modal cost of the remaining modes. Thus, using MCA we have
selected modes 1, 2, and 4 as the three "best" modes to model our system.
Let us now look at the other technique which we call OT . The selection cri-
teria are discussed in Appendix C and result in a modal factor which is simi-
lar in appearance to the modal cost. Thus, let us call this factor Vo. Then
from Appendix C (using the notation above) we have
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Voe~~~~ = 2. -' + i B 2

a+ i~a "

Vo2 c" =2pp (6-15)

To use this technique, we must estimate L., -cted amplitudes for the driving
force w. We assume here that the force at the base has a magnitude 10 and at
the gi -bal a mag. tude 1. Using these assumptions, we obtain the vector
shown under the OT column of Table 6-1.

TABLE 6-1

MCA AND OT2 SELECTION CRITERIA VALUES

-Mode MCA OT2

1
2 o o

3 0.00388 0.727
4 0.00934 0.0106
5 0.000275 0.000048
6 0.0000024 5.88 x 10-7

From these results, we see that we should select modes 1, 2, and 3.
This conclusion conflicts a bit with MCA. That this should be so is not sur-
prising since the selection criteria are very different from those used under
MCA. It is unknown whether there is any equivalence between the two
methods.

These methods can be applied to more complex, flexible systems.
Appendix D contains a brief discussion of the application of the modal cost
analysis method to a continuous, uniform beam model. This model can also be
analyzed using the OT technique. With this technique we can proceed in ana-
logous fashion for the first eleven steps. The truncation criteria for OT
are based on keeping modes which have the highest response amplitudes as
explained in Appendix D. Starting from Appendix D Step 12, we can calculate

2 24 a (xo )  (Da (xa) '.
Voa = 2 4 2 (6-16)

4 c Wa mb

This can be compared with Appendix D Step 16 and reveal s that the two
truncation methods yield nearly the same results except that OT contains the
extra factor 2;o( which tends to reduce emphasis on the higher order modes.
This result is similar to that which was noted before for the simple 6
deree-of-freedom model where modes 1, 2, and 4 were retained using MCA while
OT procedures suggested 1, 2, and 3 should be retained. Results for the 1st
10 beam modes are shown in Table 6-2.
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TABLE 6-2

COMPARISON OF MODAL IMPORTANCE AS DETERMINED BY THE MCA AND OT2 METHODS

x 10-10 x 10-10 MCA OT2

Mode MCA OT2  Rank Rank Parameters

1 100.666 161.27 1 1 El = 10G

L = 10
2 1.35 x 10-12 5.39 x 10-14 7 7 M6 = 1

Xo 12 = L
3 10.4822 .18659 2 2 Xa = L/4

4 2.59 x 10-13 2.60 x 10-15 8 8

5 .94791 .00607435 3 3

6 1.99 x 10-15 8.88 x 10-19 6 6

7 .13535 4.425 x 10-4  4 4

8 1.89 x 10-14 4.74 x 10-17 9 9

9 .018735 3.705 x 10-5  5 5

10 4.56 x 10-16 7.3 x 10-19 10 10

These results point up the fact that modal truncation is not entirely
scientific. The accuracy of the truncated model depends on the disturbances
as well as the accuracy of the original model. It appears to be impossible
to remove the analyst's subjectivity entirely from the analysis process. It
enters into the construction of the system model and thus affects the large
dimensional system model. Judgement must be exercised to select the distur-
bances to be included. This judgement is necessarily based on subjective
assessments. Since analysis is always subjective, one can only assess how
"good" the analysis was by observing how well the analyst's predictions match
experimental reality. Any other kind of assessment is probably unrealistic
at best and an exercise in obfuscation at worst.

2These two methods (MCA and OT ) can be compared on the basis of ease of
understanding and application. The application pf each method appears to be
about equally difficult. However, since the OT method is more pictorially
appealing, it seems to be more readily understandable and perhaps from that
standpoint better. What remains to be assessed is the effyct on overall sta-
bility of the control system designs based on MCA vs. OT truncated models.
In any event, such proofs are probably academic unless some element of physi-
cal reality is injected. The real world will tell if the system is stable.
Analysis can only make well-educated but uncertain predictions. Finally,
then, the Modal Cost Analysis technique offers a very nice formal way of
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treating modal truncation and should appeal to those of mathematical bent and
offers greater potential for extension to more general systems and to the
problem of modal truncation in general. It would take an exhaustive study to
conclude superiority of either technique or of any technique and, until this
is done, the analyst's judgement must necessarily continue to be involved in
modal simplification.

2.6.3 Conclusion. The Modal Cost Analysis (MCA) method for the trun-
cation of linear system models is a versatile method. It provides a formal-
ism for reducing the order of a large variety of problems. It is oriented
toward the optimal control problem and consequently may be somewhat less use-
ful for other applications. Also, it does not seem to take into account
questions of stability. It is not clear that the modes selected through the
MCA criteria include the ones that are most potentially destabilizing. Also,
it appears that there is too much freedom for the analyst to select the
reduction criteria, in that much judgment must be exercised for the determin-
ation of the statistical behavior of the disturbances and for the selection
of the weights to be used in the cost function. This freedom means that it
is possible and indeed likely that different analysts working the same prob-
lem will arrive at different models and results. Thus, it appears that less
formal, more intuitive methods for modal truncation are just as good as the
MCA method and perhaps better since they may provide the analyst with more
intuitive insights into his particular problem and certainly require less
effort in learning a new formalism. The use of formal methods for modal
truncation or for model reduction in general is an area in which much more
work is needed and methods along the lines of modal cost analysis are desir-
able. We have outlined what we feel are some of the difficulties of MCA and
it appears that there are ways to overcome at least some of them. This
effort should be continued to reach a more generally usable and understand-
able technique or techniques.

2.6.4 Modal Cost Analysis. The work performed by Dr. Robert E. Skelton
on this task under a subcontract is described in Appendix E, "Case Studies of
Model Reduction of Flexible Structures by Modal Cost Analysis."

8
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3. CONCLUSIONS

3.1 Task 1 - Digital Implementation of Control Techniques. Software -

routines have been written that allow systems of the DARPA type to be ana-
lyzed quickly and efficiently. Frequently domain design programs have been
developed that allow digital compensators to be designed rather simply. A
design technique has also been developed that extends the application of
Seltzer's Digital Parameter Space technique to the design of digital con-
trollers for large flexible structures characterized by an arbitrary number
of bending modes.

3.2 Task 2 - Extensions of Modeling Techniques, and

Task 5 - Investigation of Structural Damping Models. Because the
work on these two tasks was so closely related, the conclusion is drawn from
the consolidated results.

The modeling techniques developed for the LSS/GTV were given impor-
tant corroboration by modal testing done on the ASTROMAST beam at MSFC.
These results indicated accuracies in the lower modes of 11% or better.
Thus, we have developed a dynamic model of the LSS/GTV and it has been veri-
fied, to the extent it can be currently, with the data available and we are
confident our techniques represent the structures.

3.3 Task 3 - Evaluation of ACOSS Control Methodologies. The LSS con-
trol techniques discussed include Lockheed's LAC/HAC, TRW's Positivity, and
General Dynamic's MESS. Although each approach is observedly different, each
technique employs the same objective, optimal performance when presented with
an inaccurate plant model. Each technique addressed the problem of the de-
stabilizing effect of uncontrolled modes on the system. TRW concludes that
application of the positivity theorem to LSS assures stability (i.e. system
will not become unstable due to observation and control spillover effects).
In addition, positivity more indepthly (than LAC/HAC or MESS) examines the
problem of noncolocation and inclusion of actuator and sensor dynamics.
Lockheed concludes that LAC/HAC algorithm eliminates spillover instabilities
through the application of frequency shaping. General Dynamics concludes
that MESS solves the problem of known truncation through restructuring of the
performance index.

3.4 Task 4 - Determination of Optimal Form for ACOSS Controller. The
application of the computer aided-design tools to design a digital control
system for a class of Large Space Structures has been demonstrated. It has
been shown that the design tools reduce the computational burden associated
with the design process. The tools have been designed such that the model
can assume as many bending modes as necessary.

The form of the control system for the DARPA Structure has been devel-
oped. The preliminary analyses show that it is possible to design the system
with a bandwidth that actually extends beyond the frequency of the signifi-
cant bending modes. Sensitivity studies indicate that the multi-loop design

87



I

technique is also "robust" relative to variations in modal data. In the ex-
ample given in Section 2.4.3, modal frequencies were varied from + 10% and +
20% of their nominal values. The results showed that the system r'esponse wa-s
reasonably stable up to + 20%.

3.5 Task 5 (See 3.2 above.)

3.6 Task 6 - Implementation of Component Cost Analysis. The Modal Cost
Analysis (MCA) method for the truncation of linear system models is a versa-
tile method. It provides a formalism for reducing the order of a large
variety of problems. It is oriented toward the optimal control problem and
consequently may be somewhat less useful for other applications. Also, it
does not seem to take into account questions of stability. It is not clear
that the modes selected through the MCA criteria include the ones that are
most potentially destabilizing. Also, it appears that there is too much
freedom for the analyst to select the reduction criteria, in that much judg-
ment must be exercised for the determination of the statistical behavior of
the disturbances and for the selection of the weights to be used in the cost
function. This freedom means that it is possible and indeed likely that dif-
ferent analysts working the same problem will arrive at different models and

results. Thus, it appears that less formal, more intuitive methods for modal
truncation are just as good as the MCA method and perhaps better since they
may provide the analyst with more intuitive insights into his particular
problem and certainly require less effort in learning a new formalism. The
use of formal methods for modal truncation or for model reduction in general
is an area in which much more work is needed and methods along the lines of
modal cost analysis are desirable. We have outlined what we feel are some of
the difficulties of MCA and it appears that there are ways to overcome at
least some of them. This effort should be continued to reach a more gener-
ally usable and understandable technique or techniques.

3.7 Application of Results of ACOSS SEVENTEEN. The results of this two
year contract were considered by DARPA to be of such significance that a fol-
low-on contract was established and effort was initiated in December 1983.
The new effort is called Advanced Structural Control Techniques (ASCOT) and
will be for a period of twelve months.

3.7.1 Objective of ASCOT.

3.7.1.1 To develop, evaluate, and prepare to test and implement Advanced
Structural Control Techniques (ASCOT) that are applicable to future large
flexible military spacecraft.

3.7.1.2 To develop and integrate a Simplified Systematic Digital Design
(2D2) which meets anticipated structural and attitude control system perfor-

mance requirements.

3.7.1.3 To develop an ASCOT Technical/Management Program Development
Plan and to select, evaluate and compare candidate control system techniques
including $2D2.
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APPENDIX A

EXTENSION OF THE PARAMETER SPACE METHOD TO

LARGE FLEXIBLE STRUCTURES

S. M. Seltzer, H. E. Worley, R. J. York

Control Dynamics Company

Huntsville, Alabama

Abstract

The application of the parameter space method is extended to a significant
class of digital control problems associated with large flexible structures.
The control problem considered was to develop a proportional-derivative form
of a control law that would keep a sensor inertially fixed that was mounted
on a large flexible structure which is represented in modal coordinates by a
rigid mode and an arbitrary number of bending modes. An algorithm was de-
veloped that would accept as input an arbitrary number of bending modes and
would return, as output the form of the characteristic equation needed for the
parameter space method. Values of the control gains would then be determined P
from stability considerations and desired damping.

I. Background

This paper extends the application of the parameter space method to a signif-
icant class of digital control problems associated with large flexible struc-
tures, problems that were previously intractable when the designer wished to
include several bending modes -in the plant representation. The control prob- -

lem considered was to develop a proportional/derivative form of a control law
that would keep a sensor inertially fixed that was mounted on a large flex-
ible structure which is represented by a rigid mode and an arbitrary number
of bending modes. The goal was to develop an algorithm that would accept as
input from the designer an arbitrary number of bending modes for the plant
representation and would return to him the form of the characteristic equa-
tion needed for the parameter space method. Based upon stability considera- I 0
tions and the desired damping, values of the control gains would then be
determined by this method. The ability to handle a digital proportional/der-
ivative controller for an arbitrarily large number of bending modes is the
main contribution of this work.
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Before proceeding, a quick review of the parameter space method is in order,
including its foundation and the previous work to extend it to higher order
systems. Based primarily on the work of D. D. Siljak[A-1) the parameter
space method is an analytical tool developed for use in control system analy-
sis and synthesis. Briefly, the method as developed by S. M. Seltzer[A-2-
permits one to map the location of the roots of the system's characteristic
equation onto a plane (or three-space if desired) whose coordinates are the
system's free parameters. The parameter plane is readily divided into
regions identified with system stability and instability. "

-A

Once the parameters of interest, k0 and k1, are chosen, the characteristic
equation of the closed-loop control system is written in the needed form:

M
C.E. =,I, [ai ko + bi ki + filz i  (A-i)

The free parameters need not be gains but just as well could be other system
parameters. In addition to the characteristic root locations, other factors
of interest such as constant damping ratios and specified exponential time
constants may be portrayed as contours on the parameter space. Thus in a
manner somewhat reminiscent of the classical root locus method, a portrait
may be presented of all pertinent aspects of the system's transcient response
as functions of several parameters (rather than the single parameter, open-
loop gain), and as a function of the independent argument, 0, where is the
system damped frequency and T is the digital sampling period.

The parameter space approach may be employed in either the continuous or dis-
crete domain. Techniques such as the Simplified Analytic Method have been
developed for the purpose of generating the needed arrays A, B, and F for the
characteristic equation, and are satisfactory for lower order systems. When
N becomes large (i.e. N > 3), the problem becomes intractable. The extension
of the method to handle arbitrarily high order systems for the continuous
case has been accomplished by Seltzer and B. A. Asner.[A-3] This work
addresses the sampled data or discrete control case.

A-1. Siljak, D.D., Nonlinear Systems, Wiley, New York, 1969.

A-2. Seltzer, S.M., "Sampled-Data Control System Design in the Parameter
Plane," Proc. of Eight Annual Allerton Conferences on Circuit
System Theory, Monticello, ILL., 1970, pp. 454-463.

A-3. Asner, B.A. and Seltzer, S.M., "Parameter Plane Analysis for Large
Flexible Spacecraft," Journal of Guidance and Control, Vol. 4, No.
3, May-June, 1981, pp. 284-290.

91



II. Plant Representation

Modal Coordinates

It is assumed that the plant representation of the large scale space struc-

ture is in modal coordinates. If the original system is defined by the vec-
tor matrix equation

[m]X + [k] X = F (A-2)

where

[m] is the mass matrix
[k] is the stiffness matrix
F is the force/torque vector,

then the transformation

X Q n (A-3)

where Q is the modal matrix composed of the normalized eigenvectors will

yield the desired representation

n + [W ]n = QTF Tc (A-4)

The plant transfer function is expressed as

N OiYl s
Gp(s) = 2 +(A-5)

1=1 + 2eiS + Wi
2

where Yi, Oi denote the slope of the ith mode at the torquer, sensor respec-
tively.

* ;i, wi denote the damping ratio, natural frequency of the ith mode
rerespectively.

(See Fig. A-i) Note that modal damping has been introduced here.
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Form of the Control Law -

Tesensed angular rate, 9,is measured directly,

N
a jnj .(A-6)

*The commanded torque employs 0 and its integrated value, 0, (see Fig. A-2),

Tc KP 0+ KDO .(A-7)

- Assumptions

* a) The digital onboard controller will be of the position/derivative (PD)
* form.

b) One has knowledge of the damping ratio, ci, and frequency, wi, of each
mode used.

c) Only one sensor, torquer pair is used, but colocation is not assumed.
d) No torquer-sensor dynamics are included.

* The sel ected parameters for portrayal on the parameter plane are rel ated to
the control gains, namely for the algorithm developed,

ko KD k Kp T/2. (A-8)
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Figure A-i. Plant representation.f
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III. CHARACTERISTIC EQUATION

Using standard feedback control simplifying techniques, the transfer function
corresponding to the control system in Fig. A-2 is given by

- Kp Z[Gho(S)Gp(S)] A9

r* 1 + [KD+KpDfr(z))Z[Gho(s)Gp(s)]

where

N Wlis
Gp(s) . 22(A-10)

i=1 S2 +24iwis+wi2

1 - Ts T(z+l)
Gho(5) =,Dftz) =,(A-11)

s 2(z-1)

with 'ii' i denoting the slope of the ith mode at torquer, sensor (respec-
tively), and ;ij w denoting the damping ratio, natural frequency of the ith
mode. The sample time is T, and Df(z) represents the trapezoidal integration
rul e.

The following, frequently appearing quantities in the derivation are repre-
* sented by the given symbol:

ai iwi ci cos siT

*i W1[1jCIi/2 si sin Bi (A-12)

i ei-c~iT> 1
Three lemmas which simplify the derivation follow[A-4]

Lenmma 1.

Z[Gho(s)G(s)J 1z 1)]Gs (A-13)

* A-4. Kuo, C.K., Digital Control Systems, SRL Publishing, ILL., 1977.
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Lenmma 2. If u,*0, then

1~ (~)/ ze- wlT sin[w(l1 2)1/2T]

s 2+2cw+w2 W= -)/ z _2zecTcos~w1j-C )1/2T]+e-2 c- (A14

Restating Lemmna 2 using the notation in Equation (A-12) yields

z 1 2= .:* 2ez 2(A-15)

sL +2s+wa 2] 8 Z2 2c~

Finally, if w=O, then

Lemma 3.

* [1 Tz
z 22 (A-16)

With the above limits, the characteristic equation can now be derived.
Equation (A-li) will replace Df(Z), but one must calculate

=[z-1 Tz NJ *,yj eiciz 1 (-7

Z[ho5Gp5] z[ l(Z_1)2 i=2 si Z2 -2eiciz+ei2J

Next, substitute into the denominator of the o*/r*, i.e. Equation (A-9), to
obtain

T z+1l z-1 (z)

1 + [KD p*K [ 1Y1 2z

(A-18)

N *iyi eisiz 1
*+ ~ 2_ 2 0.

i=2 si z -2eiciz+ei
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Multiplying through by the common denominator

N
(z-1) 2  n (z2-2eiciz+ei2) (A-19) L. -

i=2

yields for the characteristic equation

N T i
2 2_ 2 (z+z1).

(Z-1) (z -2eici+ei 2) + +KD(Z-I) K
i=2 - -2 )

*ii I (z _2eiciz+ei.) ....0)N

2 2k

€iy1T n (z 2ii~~ (A-20).".i

i=2 -

+ Z -)I(z2-2eiciz+ei 0 .

k=2 Ok i=2

IV. Algorithmic Development of Parameter Plane Form of C.E.

For the parameter plane analysis, the characteristic equation must be in the
form

2N
C.E. = (Aiko + Bikl + Fi)z I • (A-21)

i=0

The objective then will be to develop a programmable algorithm to transform
the characteristic equation of Equation (A-20) into that of Equation (A-21),
that is, generate the arrays A, B, and F.

The following algorithm for multiplying polynomials will be instrumental in
achieving the above goal. As can be seen from Equation (A-20), polynomial
products of the form

N 2

P2N =RI (z 2+aiz+bi) (A-22)

p -
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- ~ occur often. Notation: In pm(z), let pm denote the coefficient of the zJ

term of this polynomial. For example,

p2(z) =P 2,2z2  P2, z + P2,0  (A-23)-

* where

*P 2,2  p 1p 2,1 =al. P2,0 =bl (A-24)

*ALGORITHM P: Let N > 2 be specified. Then the coefficient of the polyno-
mial,

N 2

P2N(z) = n (z + aiz + bi)(A )
i= 1

* can be determined recursively by

P2m,O = P2m-2,O b11

P2m,l = P2m-2,1 b,1 + P2m-2,Q am

P2m,i P2m-2,l b'm + P2m-2,i-1 am1 + P2rn-2,i-2

for i=2, 3, .. ,2m-2.

P2m,2m-1 = 2m-2,2m-2 am +P 2m-2,2m-3

P2m,2m P -,2-

where m =2, 3, ...N

Proof: (Method of mathematical induction)

0Notes: 1. Calculation order is P 2 W gven then P4 (z), P 6(z), P 2(z).

2. The above recursive approach is more accurate computationally
than closed form expressions.
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To obtain the desired form of the characteristic equation, Equation (A-21),
one can generate polynomials D(z) and H(z) so that the characteristic polyno-
mial becomes

D(z) +[KD(z-1) + Kp- (z+) H(z). (A-27)
2

The general procedure is outlined in Figure A-3. Note that D(z) and H(z)
have degree 2N and 2N-2, respectively.

Each step in the procedure is discussed with computational efficiency in
mind.

Step 1. The polynomial D(z) can be obtained using Algorithm P with initial
values of

d2 = 1,. d = -2, do = 1. (A-28)

Notation: Let ci denote the coefficient of zi in polynomial C(z), i.e. for

D(z) = d2N z2N + d2N_1 z2N -1 + ... + d2 z2 + dl z + do (A-29)

Step 2. Obtain the coefficients of G(z) from those of the previously calcu-
lated D(z). Since

D(z) = (z 2 -2z + 1) . G(z), (A-30) P .

1 0
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N
1. C MPUTE D(z) = (z-1) n (z - 2eiciz + ei 2 )

i=2

2. COI'UTE G(z) = II (z - 2ecz + e 2 )

i=2
i k

N
3. COPUTE E(K)(z) = (z-1 ) ii (z2 - 2eiciz + e 1 )1=2

i* k

r N
* ~4. COPUTE H(z) = *1YI T.* G(z) + Z ¢kYkeksk • E~k)(z)

k=2 Ok

r7 0

5.' Lastly, express A, B , F intem of elements of D(z), H(z) -

Figure A-3. Procedure for obtaining arrays A, B, and F.
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multiply out the right-hand side, equate coefficients, and solve for the
coefficients gi, i=O, 1, 2 ... , 2N-2 to obtain

"g2N-2 = d2N

92N-3 = d2 _1 + 2g2N-2 (A-31)

g2N-2-i= d2N-1 + 292N-1-i -2N-i

for i =2, 3, ....2N-2.

Step 3. Express the coefficients of E(K)(z) in terms of those of D(z), K
given. To do this, note that -1

2J

D(z) = (z2 + ak z + bk) . E(k)(z) (A-32) ]
where (referring to Equation (A-20)), *

2
ai =-2eici, bi =ei (A-33)

As done above in Step 2, one can obtain *
e(K)2N.2 = d2N

e(K) 2 -3 = d2N_- - ak e(K2N_2  (A-34)

e(K)2N_2_i = d2N-i -.bk e(K)2N-i ak e(K)2N-1.i
I

for i=2, 3, ... , 2N-2.

Step 4. Just element by element addition.

Ste 5. With ko, kI being the two parameters of interest as given in Equa- S
tio A-22),2the arrays A, B, and F can be obtained. For example, the coef-
ficient of z is given by

T T
d2 + KD • hl +Kp - h l - h2 " KD +Kp- h2  " (A-35) -

2 2
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Collecting the appropriate terms as shown in Equation (A-21) yields

A2  hl h2 , 82 hl +h2, F2 d2  (A-36)S

The complete arrays are given in the following Table A-i.

TABLE A-i. TWJO PARAMETER FORM OF CHARACTERISTIC EQUATION (ARRAYS A, B, AND F)

__ __ __ _ Ai __ _ __ _ __ _ _ Fi

2 N 0 0 d2 N

z2N -1 h2N..2 h2 N 2 d2N 1

2N2h2N-.3 -h2N-.2 h2N-3 +h2N-.2 d2n-2.

z2N..3  h2N-.4 -h2n..3 h2j..4 +h2N-.3 d2n-.3

Zhl-h 2  hl +h 2  d2

fjho- hl ho +hl d
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V. VERIFICATION i

In previous contractual work on large space structures, the parameter space
approach was employed with one bending mode. Subsequently, a second bending
mode was added. The results obtained with the new algorithm that is designed
to handle an arbitrary number of bending modes are in agreement with those of
the previous work.

VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

The development of this algorithm removes a serious drawback in the applica-

tion of the parameter plane approach to the problem of discrete control of
large space structures. Previously, the number of desired bending modes
exceeded two, then the task of obtaining the necessary form of the character-
istic equation was quite complex. Now, once the modal representation is
available, this drawback is eliminated by the automated generation of the
needed arrays A, B, F. It is anticipated that this algorithm will now be
employed in conjunction with the modal representation of the DARPA type large
scale flexible space structure as developed by Control Dynamics.

Several areas of possible extension of this work follow:

1) Include sensor, torquer dynamics.

2) Allow for more than one sensor, torquer pair.

3) Include structural damping at the start, rather than introducing it
later into the modal representation.

4) Introduce a second integrator into the feedback loop with a corre-
sponding control gain. Preliminary work indicates that the same
line of development can be used and that the needed arrays A, B, C,
F can be generated by the computer.

I0
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APPENDIX B

Derivation of Modal Cost Function

The modal cost analysis technique (MCA) is a method based on statistics for
selecting a reduced set of coordinates for modeling a linear system. The
method starts with a cost function and proceeds to select a, subset of the
modal coordinates of a specified size such that the reduction in the cost _
function resulting from dropping the coordinates not in the subset is mini-
mized. Let us consider a linearized system

x = Ax + Bd, (B-i)
= Px.

There exists a transformation T which transforms this equation to modal coor-
dinates x = Tn.

n = An +9d
P- - (B-2)

= T=1B;IT = PT

The modal coordinates n diagonalize the matrix A to A. Rewriting the com-
ponent equations

na = _ +I +. aado, (a not summed) (B-3)y11 = vn.

Here we have used the convention that repeated indices are summed except as
noted. Let us define a cost function V

V = lim e{ey+Q} ; y+ = yT*; where * denotes complex conjugate

= lim F{QJvJy*yV}
t4'W

= lim E {QUV1.Ua*lvyna*ny}
t+- .

1 ~ im{QWVPF*a vynca*ny1

= C QVra1Vn*n-

= Qjvpa*PVyF(na*Wny }

Now Equation B-3 can be integrated in closed form

t

na = e~atnao + f dt'e xa (t - t ) ad(t' (a not summed)
0

105

• "o ." • ...........



t :- --I

I im J dt'eAO(t't')l'raBda(t') (B-4) .t-" 0

Equation B-4 only holds if the linear system is stable asymptotically. Now

t t

{nc*'ny'} = lim e { f I dt'dtex*(t-t)eXy(tt)
0 0 BcB*By5

d *(t )d6 (t")} .

t t -: ' '

lir z*,yS dt'dt"ex *(tt')eY(tt)t ~~ [da*(t' )d6(t")] 12.1: '

(B-5) 0- 'S

At this point it is reasonable to assume that the disturbances da(t') and
d6(t") are uncorrelated for t' = t" so that

c {dO*(t')d 6 (t")} = ao6(t)6(t'-t") (B-6)

In addition, we assume the disturbance statistics are also independent of
time so that aB6 is constant. Thus

c {dB*(t')d 6(t") } = 66(t'-t") (B-7)

Substituting Equation 8-7 in Equation 8-5 and integrating over t" we obtain

ti dt' e(xc* + )Y)(t-t')0

t Yt
= lim t dt'e(xa* + x

t+-

* e(x + X)

* *+ A0  + .

B 0*0so 6 (-1)

*a

A0+

* BBB 6 6 (B-8)

+a XY
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Thus,

- WQ P *vry 6 oB6 (B-9)
Xct + X

In virtually all problems of interest the system described in Equation B-1
was originally a mechanical system whose equations of motion were developed
as a set of 2nd order linear equations

Mq + Dq + Kq = d
(B-l0)

y q +

The mass matrix M is normally positive definite and symmetric, and the stiff-
ness matrix K is nonnegative definite and also symmetric. With these assump-
tions we are assured of the existence of a transformation matrix 0 such that

OTMO = 1 and
2 2 2(B-li)

OTK = Q2 = diag (wi 2 ... wN

In general, the matrix 0 does not diagonalize the damping matrix D. However,
for lightly damped systems it is assumed that OTDO is approximately diagonal
and the assumption is made that

OTDO = 2 Q; = diag {c1 ... tN}. (B-12)

The system in Equation B-9 is put in the form of Equation B-1 by writing

F~ = [-M'D 0 -MWK 1r-1 +

- - - - -+ - d(.3

Using the transformation q = *n we transform Equation B-12 to

j = [+ [ d (B-14)

n 0 rl0- . "
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APPENDIX C

Derivation of OT2 Modal Peak Function

2

System: nL + Z +%a + ( l = j pWp ,  YB = O~ + 'n

Steady State Solution:

BapWPe i Dt
2 2

Wa -D + 2i~ar"D

YO = o (~cnc+ aTla)

P 0",+ iWD

2 2 BapwpewDt
& " J D + 2i r4wWD

= yB12  = a (P + i sD '8 ) a 1
8 2 2

sal Wo (LD + 2ica~w

Yo

modal peaks

As before, we assume Ca << 1 so that the peaks in the VO curve corresponding
to the modes are due to coincidence between wD and some %. Thus,

~Voa; -Ba + ~..Ba-B*v°= a O - 8L I~ 8B
2 2

P)sa ++ ,,. 2p2VO = oa Vo 2 B Ba Z

-o 2 4o . .

.... ..

,= • -. o.. . ..-111
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APPENDIX D

'4 A Tutorial Example of Modal Cost Analysis

by Robert E. Skelton

Objective: Illustrate the features of Modal cost analysis with the minimum
of detail.

Suggested model: A simply supported Euler-Bernouli beam.

~ L

Equations of Motion:

4 2a W(x, t) 3w(w, t) (D-1)
El + p A 2 u(x, t)

ax4  at2

u(x, t): force per unit length
w(x, t): vertical displacement

P: uniform mass density per unit area
A: cross-sectional area of beam

w(x, t) OW(x n(t) O *(x) ni(t) (D-2)

inx 0
Oi(x) = asin-- ,i = 1,2,...... (D-3)11

2 - 4~ - i = 1,2,..... (D-4) *
L PA

normalize oi(x):

L 
12f p AO 2 x)dx =PAL =mb (determines al) (D-5)

0
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leads to
Loi(x)u(x, t) dx

ni(t) + 2ciwini(t) + i2 n.(t) = ; (0-6)
L PAi 2(x) dx

Damping i arbitrarily added to reflect presence of material damp-

ing; Point located actuator (force):

u(x, t) = u(t) 6(x- xO ) (D-7)

Output of interest: w(xO , t) - y(t) displacement at xo.0
y(t) = 0 i(xo)ni(t) (D-8)

Hence (6) reduces to

hi(t) + LI ni(t) = biu(t) (D-9)

y(t) = . i(xo)ni(t) (D-10)
i=1

where

b - *(xa) (D-11)
mb

Modal Cost Analysis

SIn the absence of any closed loop information about the control inputs u(t)
we shall assume that the actuator device has some signal to noise ratio such

* that "at idle" (no control commands) u(t) is simply the zero mean white noise
emanating from electronic noise within the device power system.

C u(t) = 0, C U(T) u(T) z 6(t- T) (D-12)

Under these conditions the performance metric

0T

V = lim le f y (t)dt (9-13)
T- T 0

measures the response of the system at the location x of interest,
and the contribution that each mode makes in V is
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Vi - 3 *i2(xo)bi 2 (D-14)

and the total response is the sum of the modal responses

0oV = Vi  (D-15)

i=1 - 0

Vi is called the modal cost.

From a variety of substitutions of (3), (4), (11) into (14) the following
equivalent expressions of modal cost are obtained. S

Vi 2 2(x)i2 (xa) (D-16)
2ciwi 3mb

Vi = kl .6 0i2 (x0) i 2(xa) (D-17)

k = L4 [(EI) 3 / 2 (pA) 1 /2n611 (D-18)

1 2 i 7rxO  n2i7xa  L ",x

Vi = k 1 sin - sin xsin' dx 4
L LL

(D-19)k0  = klL4

Conclusions:

1. The modal cost Vi tends toward zero as i tends toward =, but not monoton-ically!

2. Explicit analytical formulas can be developed for any continuum model of' -"

a structure for which mode shapes are known.

3. The value of a mode (with respect to a quadratic performance measure) is
related to the product of the mode shape at the input output locations *

(D-16).
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Abstract

The purpose of this report is to present a detailed account of

the application of modal cost analysis for lightly damped flexible

structures. The report presents detailed data for model reduction and

control design for two different structures and two different model

reduction methods.

The first structure is the simply-supported Euler-Bernoulli beam,

chosen for minimum complexity to gain insight into the methods. The

second structure is a truss structure for a solar optical space tele-

scope, chosen for more practical applications. The finite element

model for the telescope was provided by C. Draper Laboratories.

The first model reduction method is called modal cost analysis,

(MCA), a technique which most readily applies to lightly damped structures.

This technique decomposes the mean-squared outputs as a sum of contribu-

tions from each mode of the structure, and retains the modes making

the largest contribution. The second model reduction method is called

cost-equivalent realizations (CER), a technique which matches the overall

mean-squared value of the outputs.

For lightly damped structures, the modal cost analysis is computa-

tionally simpler and performs just as well as the more sophisticated S

cost-equivalent models. For systems which are not lightly damped the

cost-equivalent models have advantages.

1 1
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1.0 INITRODUCTION

When compared to other large scale systems, flexible spacecrafts

have some peculiarities which can make control more difficult. In

this discussion emphasis is placed upon the time domain and suboptimal

Linear Quadratic Gaussian (LOG) methods, with special attention given

to the effects of modeling errors. These effects are discussed in

light of the model reduction problem, stability, and control design.

Flexible structures and their dynamics have been studied well

over a century. However, only recently has there been an interest

in the active control of flexible structures. Such interest was

piqued in the 1960's by a flexibility-induced instability in USA's

first satellite [l), and more recently by sophisticated requirements

* for precision controlled structures in space for astronomy, communication

networks, near-earth scientific studies, and space solar power alter-

natives, [2]. The rapid development of computers and control theory

in the 1960's has encouraged active control applications for other

o structures as well, such as flutter suppression in aircraft [3], and

active damping of bridges and tall buildings [4]. This is not to say

that active control is needed in every structure, however, and there

* is no clear means to make the decision of when and how much control

* effort is needed in a structure. There is a need to study the dynamical

properties of the mechanical system with a view toward discerning what

0 improvements in performance can easily be made by redesigning the structure

and what improvements must be left for active control functions. This

beneficiaZ interaction of the dynamics and control disciplines in the
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development of a rational design methodology has not yet occurred

to any mature degree. Usually the structure designs and the control

designs occur sequentially. This luxury cannot be afforded in the

future, as stringent requirements force us to provide better coordination

between structure design, control design, and controller software

design.

Some of the reasons that the control of flexible spacecraft

can be a difficult task are briefly described by the following three

problems.

(i) The Model Error Problem

The space structure is usually constructed of lightweight materials,

and thus the assembled structure is very lightly damped. This uniqueness

of light damping for the space structure makes the control design

extremely sensitive to modeling errors, since the slightest perturbation

of truncated modes by control action can shift these elgenvalues into

the right half plane. Also there is the usual uncertainty in the

computation of the modal data. This problem is especially critical

for spacecraft since modal data uncertainties cannot be removed before

*_ flight, due to the difficulty of testing the extremely lightweight

structure In a l-g environment.

(ii) The Limited Controller Software Problem

The practical limitations of memory and speed of on-board computers

mean that only controllers of constrained dimension can be considered,
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These constraints can severely reduce the performance capabilities

of the controlled system due again to the effect of modeling errors

imposed by the controller order constraints. (An infinite dimensional

system controlled by finite controllers immediately suggests that

"optimal" state feedback solutions are not going to be realized).

Thus, limited software serves only to compound the model error problem

by constraining the order of the controller and by adding delays in

the feedback loop.

(iii) The Performance Requirement Problem

Of course the model error problem and the limitations of soft-

ware pose no serious threat to the mission if the performance requirements

are quite lenient. Thus, the degree to which (i) and (ii) pose problems

is directly related to the severity of the. performance requirements.

Therefore, early researches on the subject have sought to help with

the tradeoffs between performance and modeling errors (including those

induced by controller software limitations).

The report is organized as follows. Section 2.0 derives the

equations of motion for a simply-supported beam, Section 3.0 describes

the model reduction methods to be used. Section 4.0 designs controllers

using the reduced models and evaluates them using the full evaluation

model. Section 5.0 describes the solar optical telescope application,
0

and Section 6.0 summarizes the report. All proofs of theorems are S

contained in Appendices so as not to impede the tutorial nature of

the text.
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2.0 EXAMPLES OF DYNAIMIC SYSTEMS

The purpose of this chapter is to develop models for several dynamic

systems. These models will be used throughout the report to illustrate

various control concepts. It is hoped that repeated use of the same

examples will further enhance the educational process. By using examples

which have physicaZ'significance and by using the s ne examples to illustrate

each new control concept, the bridge between mathematics and control engi-

neering is to be built.

For decades control theory has been treated as a discipline to be

applied after the model is developed. This point of view must necessarily

be changed for the simple reason that the mathematical models never describe

the physical phenomena exactly. There are many different models that could

be developed for a given physical phenomena, and persons developing the

models could make appropriate modeling decisions if only they knew the S

particular purpose the model is intended to serve. If the purpose of the J
model is to develop a control policy then the conclusion is that the modal-

ing problem and the ontroZ probZam are not independent. This leads to

the following discomforting reality: The particular control policy cannot

be developed without prior knowledge of the model, and the best model for

the situation cannot be developed without prior knowledge of the control p

policy. This "chicken and egg" dilemma occupies much of the current research

on control theory. For introductory purposes, however, we shall present

in this chapter simple models of physical dynamical systems and we shall D

pretend that these models are correct and hence that their accuracy is

not dependent upon the control policy. In other words, we shall momentarily

invoke a separation principle" between the modeling and control problems.
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2.1 A Flexible Structure

In many applications of control and estimation theories the physical

process is described by a set of partial differential equations. Examples

include flexible structures, fluid dynamics, electromagnetic fields, etc.

This Section develops the partial differential equations for the elastic

structure of Fig. 2.1

* "

"E: elastic
_ structure

. . with mass

density p(r)

Fig. 2.1 An Elastic Structure

The reference in which the generic position vector r is described is

inertially fixed; and the constant vector r is chosen so that I(r,t) is a
vector of shozt length to the elemental volume. In this way the equations

of motion can later be linearized in the small variable u.

Hamilton's principle states that the first variation of the

"action" L is zero along the actual time-varying path of Ia(r, t), where the

@action' L is the difference between the kinetic energy T and the potential

energy U. plus the nonworking constraint forces W. Thus, from Hamilton's

principle.
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r e

t

,( , L tjt- LprT) + C (2.1.1)ti

The kinetic energy is the norm of the velocity vector j(r,t) over the entire

structure, weighted with a(r). We shall now assume that all vectors a and"

or are described in the same given reference frame, and we shall drop the

basis vectors. Hence we denote r and r N -

r" eTr.AIe r1 +! Z r2  +63 r3

T (2.1.2)

- - ~l ~+ !~ •1+°.3 ..

simply by 11cR3 and rER3 with the basis e understood. The kinetic ""'i"

energy may be written
1

T- l(r~t)II2  -}. f{ ;Trt 0(r) i(r,tldr (2.1.3)

where dr denotes a volume increment. The potential energy Is the norm of 2 .

the displacement vector 11(,t) over the entire structure, weighted with ?T"T-

* where K Is a symmetric mtrix operator defined to include the boundary m

*conditions. We will not pause here to elaborte on this definttlin of K.'"

Instead, we shall construct K for an example. Now write the potential
*energy ."
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-. 1 1-7 7- .

u (,,t)Il 1  "T(r~t) Ku(r,t) dr (2.1.4)

The first variation of (2.1.1)isgiven from the calculus of variations

by1
a L(u. ~ t)dts.8f au + (L - - Q a +

(2.1 .5)

J tZ aL d L d

ti

* where

Tpdr -r f Tidr + fTJu dr (2.1.6)E E E,

Hence, from the rules of differentiation

- dr (2.1.7)

ip- Kdr + fE dr (2.1.8)E" E

SL {t2 L

See from (2.1.5) that for variations which satisfy d 3u tl - , CL - - )

AtIt 0, and for arbitrary variations az between t1 and t 2 the requirement

(2.1 .I )dictates that "
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3)L d 3lL" "-
a. d 3" 0 (2.1.9)

- dt))

which leads to (using (2.1.6)-(2.1.8))

- Kvdr + - p~dr = 0 (2.1.10)
_EE E

or equivalently,

p(r) ;(r,t) + iu(r,t) - f(r,t) (2.1.11)

with initial conditions, u(r,o) u a (r) , ;(ro) 0 ; (r)0

This is the partial differential equation describing the dynamics of the

elastic structure of Fig. 2.1.

4 The Ritz method [5 is now illustrated to convert the partial differen-

tial equation (2.1.1Itcan ordinary differential equation. Let the set of

admissible basis functions yt(r), 1 - 1, 2, ...,-. be oampZete(in the sense

for arbitrary "square-integrable" , min L_-q[ - 0). Then

{ .q

Y(r) N [:l(r) , y2 (r), ... '(r)] (2.1.12)

and in the mean squared-sense

i(rt) - y(r) q(t) (2.1.13)

Substitution of (2.1.12)-(2.1.13) into (2.1.11) yields 41

p(r) T(r) q + Y(r)q - f(r,t) (2.1.14)

Multiply (2.1.14)from the left by Y T(r) and integrate (2.1.14) with respect

to the volume of the structure E to obtain

[fYTr) (r) IY(r)dr~j + [f ,T(r) i'r(r)dr~q f - rfrtd
124 (2.1.15)
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or, simply

Nq + Kq (2.1.16a)

= f f'(r) p(r) Y(r)dr (2.1.16b)

K T !EYT(r)K'!(r)dr (2.1.16c)

(t)(r) f(r,t)dr (2.1.16d)

where M is commonly referred to as the "mass matrix" of the structure and K

is referred to as the "stiffness matrix" of the structure. If the forces

f(r,t) are applied only at discrete points (rr, r2, ... , r) on the structure

then .1

m .

f(r,t) = Z f 6(r-ri) , = fi n (2.1.17)

where fi Is the force applied In then direction at the spatial location .

ir. Now (2.1.16) becomes . -

Mj + Kq Bu (2.1.18a) -0

where

uTa [fT, fT ... T (2.1.18b)

8 [ T Tr , ... ] (2.1.18c)

Note that if torques rather than forces are applied to the structure, . j
the right hand side of (2.1.18a) is changed as follows. Let the torque T,

applied at rI be described in the limit as ar 0 as a couple applied at

r + 1 Ar (that is, equal and opposite forces of magnitude fl are separated

by the small distance ar, hence T * flar). Thus, for this couple the right
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hand side of (2.1.18a) becomes

8u u im [T (rlOfl T (r 2f2] fl I "f2 r rl + Ar -

T - fAr 

lim T ( r (r, LIar-0 I[Tr+ )"*~l] r -

T T T
=r *T (r) T(rlt) = .T(r,)T(rlt) (r)T1  (2.1.19)

14

where -6 ai,/ar. Therefore, we shall interpret the right hand side of (2.1.18a) -

as applying to either forces or torques simply by substituting T. for f. and

for #i where a torque is applied.

2.2 The pinned elastic beam

The above equations of motion will be illustrated for the simply supported

beam of Fig. 2.2. The beam has deflection U (r,t) only in the plane of the

paper, where r is the position from the left end of the beam. The kinetic

energy of such beams is given by (2.1.3)

I r°  .45L

I0
r .35L

y" i

y {tu(ro~t ) - i....,

z (

Fig. 2.2 Simply Supported Beam 5
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T f p(r) 2 (r.t) Q dr (2.2.1)

0

A uniform mass density will be assumed so that p(r) = p const. The

potential energy for the beam is+

U El dr (2.2.2)
7 Jo r2

where El, the modulus of elasticity, will also be assumed constant.

Integrating (2.2.2) by parts twice leads to

U a ((~(rh t) a2u(r.t)] L )3u(r,t) jIL (2.2.3)
Ur .ra o0 3r3  .

+ 0 (r,t) 3 u(r.t) dr} I E1
3r4

ar.

But since the beam in Fig. 2.2 has the bdundary conditions

20
a2mu(Lt) - 2u{°t) = 0 (2.2.4a)

ar2  3r2

{u(L,t) = p(o,t) = 0 (2.2.4b)

* (2.2.3) reduces to

au(r~t)U U EI :1 Er.lrt) ) dr (2.2.5)

F. Thus, comparison of (2.1.4) with (2.2.5) leads to the conclusion that the
• operator K for the beam of Fig. 2.2 is

;.

'The assumptions made here are that both the shear deformation and rotart
Inertia effects are negligible. This Is the so-called Euler-Bernouli
beam [6].

127

*. S:..1



4

- E 4  (2.2.6)3r4

By comparing (2.1.4)with(2.2.3) it is now clearer what is meant by the

earlier statement that the definition of the operator K must include the

boundary conditions.

Now the equation of motion (2.1.11 can be written using (2.2.6) and the

Ionnotation [ . 4 ,
Dr

p (r,t) + El s"(rt) = f(r,t) = f(rc,t) 8(r-rc ) (2.2.7)

y - (rot)

where f(rc,t) is the applied force at location rc in Fig. 2.2 and y =(rot )

Is the displacement at point ro . The boundary conditions for (2.2.7) are

given by (2.2.4).

Using the Ritz method(2.l.13)we shall Investigate the solution of (2.2.7).

Consider first the homogeneous solution,

p?(r)q(t) + EI T" (r)q(t) 0 (2.2.8)

For convenience, define the scalar by

2
Pi 2 v(r) = El Ti (r) , Yi(L) - Y1(o) = YT(L) = y(o) = 0

(2.2.9).
where the boundary conditions on the Yi satisfy the physical con-

straints (2.2.4). The matrix a2 will be defined by

a
2  2 I (2.210)

w2
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Now (2.2.8)may be written

p'v(r) Ei(t) + a 2q(t)] 0 p T (r[q + w. 2 . 0

But si nce the f i (r) are li nearly independent, (2.2.11) requi res that for all

i1, 2.

qiM + ci iq(t) =0 (q.(o), 4i(o) specified) .(2.2.12)

Our first trial solution .for.(2.2.9) is

T G'M = A. cosh s ir + B.i sinh s .r + C. Cos .r + D. sin r

where 0 APW.2/EI . Now to check to see if this is an admissible solution

we must satisfy(2.2.9). The four boundary conditions require

7 v.(o) =0 A A. cash 0 + B. sinh 0 + C. Cos 0 + D.i sin 0

A A1 + C.i

Likewise,

T y111(o) =0 A1 - C.

Hence A1i = C. =0 Now,

* i(L) =0 =B 1 sinh sL+ Di sin siL

=i(L 0 =B. sinh S.L Di0 sin B.L

Add these two eqns. to get 2B3. sinh B.L = 0.- B. 0. P'-nce, D. sin a.L =0

also, the nontrivial solution of which is sin L 0 or

~ T 2I =123S... (2.2.13)

5 Hence,
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= sin l--r (2.2.14)

and from (2.2.9)

wi  = i  = O M') 1 .= I 2 , .. , -(2.2.15) ll" .

which establishes the frequencies of vibration of the simply supported beam

of Fig. 2.2.,.

We shall make the columns of v(r) orthogonal. That is,

the columns of Y(r) are orthogonal on reE (r ranges throughout the elastic

structure E) subject to the weight g(r) if

A = TT(r) g(r) v(r)dr (2.2.16)

is a diagonal matrix. Note from (2.l.16b0that (2.2.10 is simply the mass

matrix of the structure if we choose the weight g(r) = p(r), and (22.16)..

is the stiffness matrix if we choose the weight g(r) = K. We shall choose

g(r) = p(r) so that A is the mass matrix. For the present example T (r)

is given by(2.2.14)for some unspecified D0. Substituting(2.2.14)into
I S

(2.2.16) yields
FO t= Di2L " "

j J p s -r sdr - (2.2.17)

* S

If we choose A i 1 1 (i.e. normalize the mass matrix to identity M = I),

then (2.2. 1 yiel ds
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D.. .. . . .2. .. (2.2.18) .1

Hence, from (2.2.15),(2.2.18) the ith "made shape" is

r ir

()sin 2 2r ,I=1,2, (2.2.19)

The homogeneous solution of (2.2.9) is now completed.

The homogeneous solution of (2.l-2)i s

qi(t) Q sin (wit + #)(2.2.20)

as can easily be checked by substituting into (2.2.12)if Q. and fiare chosen

to satisfy the initial conditions, Q. sin 0i qi0, 1~ cos 4i= . That

i ioi

is,

= + i /wi , 2 tan qi0 w . (2.2.21)

Thus, the complete homogeneous solution of (2.2.7) is

i(r~t) =Y(r)q(t) (r) q-(t)-
1=1

q t sin sin (wit + + i) (2.2.22)
L= L 11 1

The first 5 mode shapes (4 sg2.11. are plotted in Fig. 2.3.

Models are constructed for a specific puroose. No single model is ade-

quate for all purposes. Now suppose one is interested in using the model of0

the beam to study the MS or mean-squared deflections and their rates over

the surface of the beam, during the interval t c [0, tf). That is, suppose

S-one is particularly interested in computing 
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Fig. 2.3 Mode shapes for pinned elastic beam
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TI

tf 2 2oSf u(r,t) (r) + lld(r't)112 (r))dt (2.2.23)
o. (urtl g2 -)

for some weights gl(r), g2(r), where the norm of u(r,t) on the domain of r

is defined by

S.r(rt) 112 f f T(rt)g(r)p(r,t)dr (2.2.24)

From (2.1.3),(2.1.4)notethatthe choices g,(r) -. K, g2 (r) p(r) yields

V a 0T(T+U)dt, (although we do not have to restrict g1 (r), g2(r) to these

choices). Now substitute U(r,t) * v(r) q(t) to get

_ t + T(t)T(r)g2 (r)T(r)4(t)]dr dt
0 (2.2.25)

For g1 (r)= K , q2(r) - p(r), V becomes

tfT
V f (q (t)Kq(t) + qT(t)M (t)]dt (2.2.26)

0

Now if'T(r) is normalized so that

" I K a 2 * diag(wl, ... , WN2 } (2.2.27)

then
-tf N N

V o (qi (t)wi + 4i (t))dt I Vi (2.2.28)

where

V1  f f (q12(t)w12 + 412(t))dt (2.2.29)
0

* From (2.2.20) integration in (2.2.28) yields _

V1  2 Qj Q2 tf (2.2.30)

But since Q,2 -q12(O) + ii2(O)/Wi2,
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stant and this magnitude determines the critical modes of the structure with

respect to the performance measure (2.2.23). Due to the special structure-_

* assumed for the mass and stiffness (matrices) in (2.2.27),the q. are moda-Z

Now suppose a different performance measure is of interest. Suppose one

is interested only in the deflections and rates at the location ro (Fig. 2.2),

* rather than in the distribution of the deflections over the entire structure

as in the previous example. For this new performance measure choose g~)

- and g2(r) in (2.2.23) such that

g,(r) =gl(r 0)S(r-r 0 ) , g(r) g g(r 0 ) ts(r-r 0 ) (2.2.32)

Nowe.2.25) becomes

* t f~qT(t)YT T(r)g 1 (r.) T (ro)q(t) + iT(t) ()g( 0 ir)t)t

(2.2.33)

In order to examine the m .tcontributions in V the transformation to modal

coordinates is made

q =En (2.2.34)]

where E is chosen such that

(2.2.35)

ETKE *G2 *diag. (wl 2..WN 2
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Def ine

1 ETT(ro) g1(ro) '(ro) E (..2.36
(2.2.36)

Q2 E_ TT(r0) g2 (ro) F.(ro) E

then

tf N t
V f f(n' Qr + ;T 2; dt f f f'nnQ + ojQ )dt0 i, 1 ij j . -

2.0(2.2.37)
where ni + l2 ni * 0 , i - 19 ... , N. The contribution from ni, ni is

f otnT  n+ T  ini)  ith Co.f j

Vim 0t + 0 Q2 a T ) dt (0 1  col. of Q.1) (2.2.38)

where the modal cost Vi satisfies the cost-decomposition property

N
V= ~vi  (2.2.39)

To simplify the expressions in this illustrative example we assume ni(O) • 0,

Yi(O) t 0. Then the integral becomes

02 ;2

i = (0) Q1 + Q2  t f (2.2.40)
20i  11 2 ii

[Vli/i (2.2.41) -"T,-0

Vi  I 2 (O)tf Q1  + Q2  (2.2.4.

for any tf satisfying

2w tf = aIr

(ci " wj) tf B (2.2.42)

(WI + Wj) tf "T . -

for any integers a, 0, y. This condition on tf allows the crossproduct

terms between V1 and V. to be zero. Thus V, in (2.2.38) is presented as an

example and not a general result in order to discuss the concept of modal
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7 V

cost analysis. The general theory is presented in a latter section. Note

that the importance of mode i is measured by the magnitude of Vi.

To investigate the forced solution of (2.2.7), first assume a

solution of-the form

p(r,t) - '(r)q(t) (2.2.43)

where Y(r) is given as before(2.2.19), and q(t) is unknown. Since the S

T1(r), i = I, 2, ... form a complete set they may be used as basis

functions for the forced response as well. Multiplying(2.2.7) by

S(r) and integrating with respect to r yields the earlier result (2.1.15)

repeated here for the beam example with a torque applied at r 0 ra 0.

(see Fig. 2.2 and Eqs. (2.1.18), (2.1.19,)"

Mq + Kq= V(rc)T(rc,t) (2.2.44) -

The unit normalization of the mode shapes (2.2.16) yields MA I. Hence,

qi(t) + i 2qi(t) l *iT(rc)T(rc,t) (2.2.45)

where the definition of mi is given by (2.2.9), (2.2.15). Note that the

Ith mode shape at the point of application r€ of the force

0 (r) rc cos- rc  (2.2.46)I c :'i r L 1 iL

kL
is zero if rc t- for any integer k. These points are called "nodes" of 4

the ith mode slope. Thus, if a torque is applied at a node of mode i, then

the torque cannot excite mode I. A systematic way to deal with these events

will be developed in the next chapter.

1
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2.3 State Eauations
The equations of motion are now su~narized by

qi +  qi 4 (rc)T(r ct) 1 .- 1, 2, .... (2.3.1)

y u(r ,t) - '(r )q(t) yro) q(t)

Z _ u(rm ,t) - Y(rc)q(t) = (rm)qi(t)i=I1..

A set of firt order differential eqs. can be generated from (2.3.1) as

follows

0 1 q 0
- 2 O . . ,l bT " e

q, 1 - 4___

q2  0 1 q2  0

q2-w 2  0 q2 b2T " "|

d + f(ro,t)dt "iii :-

• (2.3.2)

(r t) M 0

K1  l 0m2

q

* q2
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where

b T tT

Pi= i (ro) mi p 'i(rm)

The parameters for the beam example is given by

L - r , p = 2/L, El - p ro = .45L r = 0,

rm = .35L

and for the choices

W P1 = sin (.45wi), mi = sin (.35ri), bi = i.

Note from (2.2.44) or (2.3.1) that the number of variables (q1, q2 ' "'" qN)

required to write the differential equations is N, whereas, the number of

pieces of information required to ooZ'e the differential equations (2.2.44)

or (2.3.1) is 2N (both qi(O) and ji(O) must be specified). That is, the

ordez of the system of eqs. (2.2.44);(2.3.1)1s 2N if q RN, and the order

of the system dictates the number of necessary initial conditions required

to solve the equations(2.3.2). The variables qi in(2.2.44 are called

configuraztion vaz'abZea In dynamics [ 7 ]. If the system (2.3.1) is put

into the first order form (2.3.4, then the variables (ql, q1  q2 ' i2 l "" --
xT

q N) * are called the sate variables.q N "

For the simply supported beam (2.3.2) the state equations are

-Ax + Bu T 2N - ,r(r ,t) u e
C

y - Cx U(ro't) * y c RI (2.3.3)
z- x u Cr_,t) - z C Rg
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00
0 q I

0W21 00

0 q1

A0 1 9,B 0 ,x q2  (2.3.3)

_w2 2 2

*C= EP.I OP 2  OP 3 .. .. .) I M Em1  0 n2 0m 3  . . . .J

We now add noise to the actuators and sensors to make the model

(2.3.3) more realistic. Define w(t) as a zero-mean white noise with

0] intensity W. That is,

E w(t) = 0 (2.3.4a)

E w(t)wT) =WS5(t-T) (2.3.4b)

E w(t)xT(0) =0 , > 0 (2.3.4c)

*where E is the expectation operator

E E) f (f() (2.3.5)

where f(:,) is the probability density function of the random variable £J

as the sample space ranges over <~ c The torque actuator which

produces the desired control torque T(r .t) in (2.3.3) also produces the
C0
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undesired "noisy" torque w(t). Hence T(rc, t) is replaced by T(rc,t) + w(t).
That is, Bu is replaced by Bu + Dw where D 8 i tn our special case, although

disturbances from other sources would call for a more general 0 # B.

The noisy measurements are described by

E v(t) - o (2.3.6a)

E v(t) vT(T) - VS(t-r) (2.3.6b)

E v(t) xT(0) - 0 (2.3.6c)

E v(t) wT() - 0 (2.3.6d)

Equations (2.3.4c), (2.3.6c), and (2.3.6d) result from the assumption that

the random vectors x(O), w(t), v(t) are assumed to be independent. The
LIS

complete system description is now given by

x 1 Ax + Bu + Dw

y Cx (2.3.7)

z Mx + V

where w and v are described by (2.3.4) and (2.3.6). Models of the form

(2.3.7) will be used throughout the sequel. The performance of the sys-

tern (2.3.7) will be measured by

V "m E 1 ft(yTQy + uTRu)dt (2.3.8)t- .

where the notation II y!l Q * y will often be used to illustrate that

the norm of the vector y is of primary interest in the control objective.

2
*The term hll R!z uTRu measures the amount of control effort being used , 0

to keep II y2l small. In the first of our studies we shall set u- 0 in

order to study the open-loop situation - the behavior of the structure

without feedback control. Our great difficulties begin with the recognition
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that the model (2.3.7) is of order 2N and even for the simply supported

beam example N-. In order to make our analysis and control design trac- -

table we are forced to consider the topic of model reduction.

3.0 MODEL REDUCTION BY COMPONENT COST ANALYSIS

3.1 Introduction

Numerous schemes for model reduction exist in the literature.

Many of these schemes are not applicable to the model reduction of

flexible space structures, due to the large dimension of these models.

Modal Cost Analysis (MCA) is one method which can be easily applied

to such systems. MCA is a special case of Component Cost Analysis

(CCA), which also offers a theory of 'Cost Equivalent Realizations'

(CER).

After a brief introduction to component cost analysis, we present

the MCA, and the CER6theory and compare these two methods with the aid

of the pinned beam example.

3.2 Brief Description of CCA

Basically, CCA considers any system as an interaction of different

components constituting the system. The definition of these components

is up to the analyst: they may have physical significance, or they

may be defined for mathematical convenience. For ay choice of

components CCA assigns a metric called component cost to each

component. These component costs measure the significance (contribution)

of each component to a predefined quadratic cost function. Then, a
0

reduced model of the given system is obtained by deleting those compo- - 0

nents that have the smallest component costs.

Mathematically, the concepts of CCA are explained as follows:

Let a state space description of a time-invariant system driven by
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zero mean gaussian white noise process w, with intensity W be given as

n
A=AX + ; e R, w c Rm

(3.2.1a)

(one may specify appropriate initial conditions on the states x;

however, for the infinite-time problems considered herein, these initial

conditions become irrevalent). The system (3.2.1a) can be equivalently

expressed in its 'component' form as

P nn. n
1 A.xj + V iw; xi cR 1 E R n i =n

I J 1

(3.2.1b)

P

where the states xi define the i-th 'component'.

Now, let a cost function associated with (3.2.1) be given as

lim E {V(t)); V(t) jt I1y(a)112 da (3.2.2)t-0ira t-0 -

where Q. > 0 is a weighting roatrix and where 1 2 is the weighted Euclidian

norm. The component costs Vi. associated with each component xi are defined by

I Tt-- EV(t)X xi}, i = 1, 2, .. , p (3.2.3)

* and are calculated according to the following component cost formula.

C:ocnenr C,;s- Form-u.a

V " Tr CC T li, I - 1, 2, .. , p (3.2.4a)
142
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whereX, the steady state covariance of the states, sitisfios

XAT + AX + VWVT - 0 (3.2.4b)

Clearly, since V = Tr CCT(xl, .3] , the component costs vi satisfy

the ccst dec mpcsitia.n proper#t

p
V V. I "  (3.2.5)

(Note: in Section IL, this property was shown to hold for the special

case of modaZ costs, (ref. eqn. (2.2.39)).

For certain definitions of components, it is possible for a

component cost Vi to be negative. However, for the components defined

in this report, these component costs are non-negative. Hence, we

will assume for clarity, that Vi > 0.

Based upon the definition of component costs, the CCA algorithm

for model reduction is therefore characterized by these two steps.

.e Basi*c CCA ModeZ Redtion AZgorithm

I. Compute the component costs V1 by (3.2.4) and reorder the

components xi in (3.2.1b) so that

I I V2  ' r -" r+l -"""- . p (3.2.6)

II. To obtain a reduced model retaining only r ccmponents, delete

the (p-r) components associated with the (p-r) smallest component

costs from (3.2.1b). The reduced model can then be written as
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= A + v. Rr

n r
iR =AR-R +Do.V XReR rnr n '...:

1=1

(3.2.7a)
Y =C

whereA A12  Air ' 1

AR= A21  A22  A2rR= 2

Arl Ar2 : Arr r (3.2.7b)

R 1C, C2 Cr]

Cost Perturbation Indices:

When comparing the reduced model (3.2.7) with the original

model (3.2.1), a convenient measure of 'model error' is defined and

calculated as follows. ,

Definition 3.7 The erroi associated with the model (3.2.7) produced

by the CCA algorithm is measured by the Cost Pert-ubation Index, q
! 0.

q = IL-VRI (3.2.8a)

where VR is the cost associated with (3.2.7) defined as

RR
V lim 1 ,,,zda(..b

R - . EVR(t)l ; L/(t) TL fo JI(3.2.8b)
* 0

If the disturbable subspace of (3.2.7) is asymptotically stable, then

VR * Tr(CTQCRXR ]  (3.2.9a) 0 O
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where XR , the steady state covariance of xR' satisfies

XRAR+ + A R R R 0 . (3.2.9b)

Remark: The cost perturbation index q measures the difference in the

overall mean-squared values of the outputs.

Of course, VR ( and hence q) can be computed only after ,

model reduction. The information available a priori can be used

to compute only the predicted cost perturbation index q, defined below.

Definition 3.2 The predicted cost perrv.bation irde q is defined by

q IV ~.( R) (3.2.10a)

where r i (3.2.1Ob)

Thus, CCA offers a simple way of 'pricing' each 'component' of

a system, thereby identifying components that can be deleted to form

a reduced model. It also offers convenient indices for the evaluation

of the 'errors' in these reduced models.

* 14
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3.3 Modal Cost Analvsis (MCA)

3.3.1 General Formulation:

In the context of model reduction, there may be considerable

freedom in the definition of 'components' before model reduction begins.

That is to say that the definition of components is up to the analyst.

For mechanical systems described in matrix second order form,

it is customary to obtain its reduced model by ignoring high-frequency

modes, without regards to the performance objective (cost function).

Modal Cost Analysis (MCA) was introduced to systematically iden-
tify those modes that have the least significance ]

in the cost function. MCA Is a special case of Component Cost Analysis.

In MCA, a mechanical system described by N-modes, is decomposed into

N-components xi, I = 1, 2, .. , N, where each component x. is defined by S

ni  .
fi= , I * 1, 2, .. , N (3.3.1)

where the i-th modal displacement Is ri and the corresponding rate is

hi" (Refer to (2.2.34) and (2.2.38)). The CCAof these components xi is

called MCA. The matrices in the 'component-descriptions' (3.2.1b) of

the system take the form
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l 0 2 CR2x2  (3.3.2a)

Aii 0 2 :i.

Di = ] R2xm  ,W =U (3.3.2b)

I " "

Ci Pi PI] e Rkx2  (3.3.2c)

where the output y is related to the modes by

N N I
I Pin + I P!;3 )1=1 i=1 I  " 3

In order to compute the modal costs L/i, one would then use

the equations (3.2.4a) and (3.2.4b). It is possible to obtain W

closed form expression for modal costs V. in terms of the modal

data. And, this expression greatly simplifies under certain

conditions on the system, as given below. I

Theorem .Z

If either (a), (b), or (c) holds:

(a) bT Ub = O, i j (input decoupled modes)

(b) CiQ.Cj = 0, 1 0 j (output decoupled modes)

(c) 41 0, I 1, 2, N (lightly damped modes)

with w2 W and PTOP T t
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then the model costs are given by

4((pill' + JP![' ji I[, > (3.3.4)

Remarks

1) Since the modes, by definition, are dynamically uncoupled, mode

i is uncontrollable (unobservable) if and only if b. 0

(Pi = 0 and P 0). Hence, Vi 0 0, if and only if that mode

is either uncontrollable and/or unobservable. Note from the defi-

nitions of b1 in (2.3.2), and Ti(r ) in (2.2.46) that if a force

is applied at a mode of mode i, then bi  0 0, i.e., mode i is

uncontrollable and hence Vi a 0. Similar argument applies to

unobservability of mode i. Thus MCA offers a systematic way to

deal with these events.

2) Since the rigid body modes have zero frequencies (wi = 0), by

(3.3.4) they have infinite modal costsif they are both observa- -

ble and controllable.

4) The computations of the modal costs Vt are obviously simple

and can be carried out for any number of modes.

4) Almost all of the flexible space structures have very low

damping (typically c " 005) and in most of the applications

PT[7 - 0, 1 0 J. Hence, for such structures, the condition

(c) of Theorem 3.1 always holds. In the sequel, therefore, we

will assume that this condition is satisfied.

The CCA algorithm for model reduction would then delete those _ _S

modes that have the smallest Vt to yield a reduced model. The cost

perturbation indices associated with such a reduced model satisfy

the following. 0
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Theorem 3.2

For lightly damped structures, the cost perturbation indices

associated with the reduced models produced by the CCA algorithm

satisfy

q =q V/ (3.3.5) ""
let

where the set T corresponds to the deleted modes.

Remarks:

1) The predicted cost perturbation Index is exact (i.e. q = q) and is

calculated by (3.3.5)

2) The cost perturbation indices (q and q) are evaluated with respect

to the cost functions (3.2.2).
S

We have assumed the definition of the output y in (3.3.3), (i.e. Pi

and P?), and the weighting matrix Q. in (3.2.2) to be arbitrary (without

enforcing any relation to the performance objective (2.3.8 )). Different

choices of y offer different interpretations of the cost function V. For

S -iinstance, by proper choice of P i and Pi , V can be made to reflect either.]

potential energy and/or kinetic energy of the system. Now since the

model reduction decisions in MCA are based upon V, different choices of

V will therefore yield different reduced models.

In the following subsections we will present two cost functions V

related to the performance objective(2.3.8) and study their merits.

The cost functions considered are
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3.3.2) V V V +pVu (3.3.6a)

3.3.3) V= V + Vz  (3.3.6b)

where

V lim 1 E f Iy()ll da (3.3.6c)

ot lim E (3.36d) (3.3.6d)tht iVu t- R .

ti
= lim +1 E lim1-E dI (3.3.6e

and where y, u and z are the output,, input and measurements

(2. 3.3) respectively, Q and R are the output and input weighting matrices

In the performance objective (2.3.8), and Q2 is a positive-definite matrix.

3.3.2 Closed Loop Formulation

Note from (3.3.6) that, since

Qc = + p i+ plu()2 d (3.3.7)

rc Luli 150Iy~)1

* 9q

Pthe cost function V V is identical to the performance objective (2.3.8

that we wish to minimize by a proper design of a controller. Hence, the

definition (3.3.7) for the cost function is most appropriate.

To write (3.3.7) in the form of (3.2.2) and (3.3.3) requires.

the following --

Y"= (3.3.8a) ""

and"-"

Q dtag {Q, pR} (3.3.8b)
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Now, unless a relation between the input and the modes is known in the form

N N L___ -
u "- gi ni - [  gl ni (3.3.9)i=l li1

(3.3.8a) cannot be expressed as (3.3.3). Since the MCA assumes the repre-

sentation (3.3.3), the relation (3.3.9) becomes essential for the application

of MCA (with respect to (3.3.7)).

Note that the control law (3.3.9) assumes that the modal displacements

ni and the rates nl are available for feedback - In general, this assumption

is not valid. Furthermore, in order to calculate the modal gains gi and g!

one needs to solve the following Riccati equation [8] for the full order "

system containing N-modes, (a formidable task whenN is large). S

KA + ATK -- 1KBRlBTK + CTQC a0 (3.3.10)
P

where the system matrices (A, B, C} are as defined in (2.3.3). Assume,

for the present, that (3.3.10) can be solved and that the expression (3.3.9)

can be obtained. With this control law in 'action', the following repre-

sentation results for the closed loop system.

nt + (2;1 mi + biTg!) nj + (wa + bjTg) ni-

N (3.3.11)

1 1, 2, ..., N.

Clearly, the modes n are no longer decoupled which leads to the inapplicability S

of MCA formula (3.3.4) to the closed loop system (3.3.11). However, under cer-ain
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assumptions, one can solve the equation (3.3.10) analytically and obtain

the modal gains gi and g! so that the resulting closed loop system can

be expressed in modal form. We now enumerate these assumpticns

and discuss them briefly.

Asw t ons for -"osed Loov MCA

(Al) All modal displacements ni and the rates 7i are available for

feedback.

(A2) bi = rie i , 1 1, 2, ... , N (3.3.11a)

where ei is the it. unit vector, i.e.

eT - [0, 0, ..., 0, 1, 0, ... 0] (3.3.11b)
•,

with 1 at ith position, r1 is a scalar, and

R I 'N

U = diag {W1I, W22 9 ... WI } (3.3.11c)

(A3) y =4Z2; (3.3.12a)

y Pr]N
N

where yp = ei  Ii  9"1=1

N (3.3.12b)

2 2

Yr"=l i i' 
-

and Q diag (w2 ... 2 1 1, it (3.3.12c)

so that
N 2 2 N 2 I o

w ni + I (3.3.12d)

now represents potential and kinetic energy.
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Discussions

1) (Al) implies that ni and ni are measured directly and accurately.

2) Clearly, frcm the structure of bi in (3.3.11), assumption (A2) requires

as many inputs as the modes, i.e., m = N. This may not happen in

general. However, when one has not decided on the location of the

m actuators, one may consider N(N >m) possible locations for the

actuators (so that (A3) is satisfied) and use the subsequent MCA to

determine (if possible) the best, desired (m) number of locations.

Hence (A2) may be interpreted as "the admissible set of actuator

locations."

3) Since the cost function (3.3.7) is the closed loop cost function, S

when (A3) holds, the modal costs Vi represent the contributions of

mode i to the oZosed Zoop potential and kinetic energy of the

structure. Hence, (A3) implies the evaluation of the participation

of the modes in the total energy of the closed-loop structure.

Theorem 3.3

When the assumptions (Al)-(A3) hold, the closed loop model costs are

given by

c 1 2 1 2 2 -2 +1 2 k 2

V C3 1 p 1i 12 i i 13 r Wii
(3.3.13a)

I 1 1, 2, ... , N

where

.2 (,i4 1 ri2 2 1/2 (3.3.13 b)i +- i )

1~~ ~ 2ri 2+ 2}I/2

I 2 i (2(2 i 2) + 4i i + (3.3.13c)
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A 2 2k ,i (3.3.13d)

i2 r ( i 1
ki2 r (3. 3. 1.'d)-.

ki3  ri (i" i "i ) (3.1e

rM Remark

and are respectively the closed loop frequency and the

closed loop damping factor of mode i.

With the expressions (3.3.13a - 3.3.13e) available, we are now in a

position to evaluate the oosed Zoop modal costs. Thus, the reduced models

obtained by the CCA algorithm is now based upon otoaed loop information.
* 0

3.3.3 Open Loop Formulation

Even though (3.3.7) is the most appropriate cost function to use for

obtaining reduced models, a number of assumptions (Al-A3) are needed to

arrive at closed form expression for the closed loop modal costs as in

(3.3.13). These assumptions, in general, may not hold. Hence, by enfor-

cing these assumptions one is changing the definition of the problem. One*
is therefore forced to consider an alternate cost function which reflects

the closed loop information, at least approximately if not exactly.

In order to present such a cost function, consider briefly the subse-

quent controller design process; (the controller design is treated in

detail in section 4). A controller (dynamic or static)operates on the

measurenents z to generate the input signals u, as shown in the block

0 i diagram below. - 0
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Now, the controllers that are designed based uoon reduced models assume

that the measurement signals available frcm the reduced models are exact. ...

In other words, if z is the measurement resulting from the reduced model,

then the controllers are designed with the assumption that z(t) = z(t).

Furthermore, these controllers are designed to minimize not the actual

performance objective (2.3.8) but only its approximation V,

V = Iir E tI(a)I + 41lu(a)2 2} da (3.3.14)
t-- O 11~)1

where y is the output from the reduced model.

Hence, the reduced models should reproduce both the outputs and the

measurements fairly accurately. Therefore, for model reduction purposes,

one should consider not only V (defined in (3.3.6c)) but also Vz (definedy
in (3.3.6e)) in the cost function. The weighting matrix Q2 in (3.3.6e)

can be selected as follows. It is well known that, in Kalman's optimal

filters [8], the magnitude of the filter gain on a measurement is

inversely related to the intensity of the noise on the measurement. This

implies that the filter gain on a noise-free measurement is high and hence

this measurement should be modeled fairly accurately by the reduced model.

Therefore, an appropriate choice for the weighting matrix Q2 is V l , where

V is the intensity of the noise on the measurements. li

With this consideration, an alternate cost function to (3.3.7) is

the following

V0 = Vy + 3V (3.3.15)

where

* JimiE 2y()1 da, (3.3.16a)
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Vz -lira E llz(a)ll i do , (3.3.16o) .

and where 0 is an arbitrary weighting parameter. The following theorem

results from the application of the modal cost expression (3.3.4).

•heorzem 3. 4

For the open loop cost function, defined in (3.3.15), the modal costs
!0

are given by

2 2_-_2 2 2I'IVo I 3 +llill + Om 2 +, l l +_ 1 )Ib p
4I i(iI V1  V

(3.3.17)

1 = 1, 2, ... , N

with

N N
z - + m + v (3.3.13)

where v is assumed to be a zero mean gaussian white noise process with

* intensity V.

Remarks

1) Unlike the closed loop MCA, there has been no necessity to make any

special assumptions concerning the system, (except, of course, that S

the damping is small).

2) The definition for y and Q which permits the representation of (3.3.16)

in the form of (3.3.3) and (3.2.2) is the following
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Y Q diag {Q, 3V (3.3.19a)

and

Pi = ' pi (3.3.19b)

The proof of this theorem follows from substitution of (3.3.19) in

(3.3.4)

3) Since the expression (3.3.17) for the open loop modal costs depends

on 0, the reduced models will also depend on a.

Note in (3.3.15) that the weighting parameter a reflects the importance

of reproducing the measurements accurately by the reduced model. For

instance, if a high bandwidth controller is used, then any error in the

measurement produced by the reduced model will be amplified by the high

gains of the controller, resulting in degradation of the performance (if

not instability) of the closed loop system. Therefore, one would choose

a large a for a high bandwidth controller. But,since the controller band-

widths (or equivalently, the values of p) are not known before the model

reduction, there seems to be no easy 'rule-of-thumb' to pick an appropriate

value of a before the initiation of model reduction. A reasonable choice

for 8 seems to be

1 0

P .1 a II
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However, in many situations, it seems reasonable to take

V = Vy lim 1 E Ily(j[ 2 di (3.3.2C)
t- t

Note that this cost function is equivalent to assuming that u : 0 in (3.3.7),

which corresponds to the open loop operation of the system. If one knows

a priozi thatonly a low bandwidth controller will be subsequently used,

then (3.3.20) serves as a sufficiently good cost function for model reduc-

tion purposes. That is, in the case of low bandwidth controllers, the

effect of errors present in the approximate measurements z will not be

very serious. Hence, one may set B = 0 in (3.3.15). This yields

the same cost function (3.3.20).

As a corollary to theorem 3.4, we have (by setting B 0 in (3.3.17))

Corso Z Zj 3.1

For the cost function defined in (3.3.20), the modal costs are given

by
1 1 2 (3.3.21) 0

V 11 lpl lp 1 i1

1= 1, 2, N

Remark

By defining

1 2  2 2 2 (3.3.223)Vz i 4 ciwi 3 { v- + 'i 2 llml-V ll(
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the modal costs in (3.3.17) can be expressed as

V^ + , i 1 1, 2, ... , N (3.3.22b)

Note that if the ordering of the modes according to the CCA algori:nm - 2

does not depend on 5, (this happens, for example, when V V

i = 1, 2, ..., N), then the reduced models too are independent of a. In

this case we say that the modeling-problem and the control-problem are
0

sepazrable. That is, when the modeling and control problems are sec_.zTa e,

one may design a controller based upon one reduced model for aZZ bandwidth

control lers.

Theor'em 3. 5

The modeling-problem and the control-problem are ser.z'ivZe if the

measurements and the outputs are related by

z Ty + v; T eRxk (3.3.23a)

with T satisfying

Tv'T = Q (3.3.23b) , -

for some positive scalar a.

Remark .

If z = y and V = Q, then obviously the conditions (3.3.23a,b) hold. -

This implies that if the outputs are directly measured (z = y+v) and if
the noise statistics satisfy V 1 - aQ, then the modeling-problem and the •

control problem are separable.
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3.3.4 Example

For the beam example considered in Sectfon 2, the following expressions

hold.

n =i i 2  .005

b i = i , pi = sin (.45iri) , m = sin C .35 i)

P m = 0 '

1 1 , 2, . , 10 .

V=Q=U= R=l

The closed loop MCA formula (3.3.13) is not applicable, since the assumptions

(A2) and (A3) do not hold.

The expressions for open loop modal costs V (3.3.21) and Vi (3.3.22a)
yi 1

greatly simplify to yield

1 2V14 sin 2 (.45iri) (3.3.24a)
-i .02

1 2

Vzi .02 14 sin 2 (.35') . (3.3.24b) 0

The expression (3.3.17) correspondingly simplifies to

1 [sin 2 (.457 ri) +ssin 2(.35 1) (3.3.24c).02 14-

Now, we apply the basic CCA algorithm for model reduction, using the

* open loop cost function of Section 3.3.3 for different values of B.
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STEP I

a a) Compute the modal costs:

Since both V and 1/z are independent of a, we will first compute
a a zi

V / and V Ziindependently. These are tabulated below.

yi

1 4.8777 e+l 3.9699 e+I V 4.9718 e+l
____________~~~i- _______ ______yi

2 2.9841 e-l 2.0454 e+0

3 4.9006 e-1 1.5106 e-2

10 a

4 6.7480 e-2 1.7666 e-l Vz Vz, 4.2007 e+I

5 4.0000 e-2 4.0000 e-2

6 2.5250 e-2 3.8841 e-3

7 4.2921 e-3 2.0315 e-2

8 1.1042 e-2 4.2174 e-3

9 1.8699 e-4 1.5707 e-3

10 5.0000 e-3 5.0000 e-3

Note that the modal costs do not decrease monotonically as i-->10. Hence

* one should not artibrarily delete the high frequency modes, as is tradi-

tionally done.
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Figs. 3.1a and 3.1b display the effect of a on modal costs and,

as a consequence, on the modal sequence. In these figures the no..zna:---ed -

modal costs are defined as

qi 0Voi/Vo , i = 1,2, ... , N (3.3.25a)

so that

Sqi= (3.3.25b)

Fig. 3.la illustrates that mode-i dominates over all the other modes, for S

all values of 0. This mode has been suppressed in Fig. 3.1b to exhibit

the behavior of the other modal costs as 0 changes. Clearly, the signifi-

cance of modes 2 and 3 changes as a goes from 0 to 100.

b) Rank the modes in the descending order of their modal costs, V
0.

We will illustrate this only for a - 0 and 8- ,as shown in the

following table. 5 0

83 RANKING OF MODES

* S

0 fl, 3, 2, 4, 5, 6, 8, 10, 7, 9}

0, 2, 4, 5, 7, 3, 10, 8, 6, 9}

- .Ip SJ

• 8-- is equivalent to omitting V in the
open loop cost function Vo .  y

STEP II. Construct the reduced models of order nr = 2r, where r is the

number of modes to be retained In the reduced models. ,

1 6
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*Fig. 3.1 Normalized Modal Costs vs. Beta
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Clearly, for Z < r _< 8, we get different reduced models, depending

on the values of s. Table 3.1 illustrates the dependence of the

reduced models on s.

Observe that if one can tolerate a reduced model with a cost perturba-

tion index of 60.,then a reduced model containing only one mode is sufficient.

Furthermore, this model retains the first mode for any value of 8. Hence,

for this example, for a reduced model with q :.6, the modeling-problem and

the control-problem are separable. However, for q < .05, they are not

separable since the reduced models now depend on o, (except when r > 9).

For comparison purposes (in section 3.5), we will choose two reduced

models, both containing 3 modes; one corresponding to 0 - 0, {1,3,2,1 with

a q - .00324, and the other corresponding to 0 -o-, (1,2,41, with a q = .00214.

Denoting these models respectively by S1 and S2 , their state-space represen- -

tation are given below.

Y C1 x1

z1 *M 1 x1 + v

where
Xi (a nit n3l n2s ;it ;39 ;21T

0 0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0 0
- 0 0 -.01 0 0 1|

0 -81 0 0 -.09 0 3

Lo -16 0 a -.04_ j
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C1 = (.9877, -.8910, .3090, 0, 0, 0) -- ji

M, = [.3910, -.1564, .8090, 0, 0, 02

2 C2 x22 z2  Mx 2 +. B2 '

where

x2 = { '2' 4' ;V ;29

o00 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

2  - 0 .0 -. 01 0 0 2

0 -16 0 0 -. 04 0 2

0 0 -256 0 0 -. 16_ _4_

C2 = [.9877, .3090, -.5878, 0, 0, 0)

M2 =[.8910, .8090, -. 9511, 0, 0, 0"

These reduced models will be compared with the cost equivalent reali- -J

zations to be generated in Section 3.4.

3.4 Cost Eauivalent Realization (CER)

3.4.1 Definition. , "

Modal Cost Analysis, a special case of component cost analysis (COA),

offers a convenient model reduction algorithm for mechanical systems

described in second order matrix form. These reduced models satisfy
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q. There exists another special set of coordinates in which the

reduced models obtained by the CCA algorithm also satisfy this property.

Additionally, these reduced models yield zero cost perturbation index,

i.e., q = 0. This implies, from the definition of cost perturbation

index, that these reduced models are equivalent to the original model

with respect to the cost function, i.e., VR = V. Hence, these are called *

Cost Equivalent Realizations (CERs). - - -

Definition 3.3 A Cost EquiaZent Reazation (CER) is defined to be a I 0

reduced model with the property

VR - V. (3.4.1)

I 0

Note from (3.3.5), (3.3.4) and (3.2.10) that in MCA

V" VRzi Vt->O , °~

I S

with the equality holding only if the truncated modes (icT) are either .

unobservable and/or uncontrollable. Hence, in general, the reduced models

obtained by MCA do not satisfy the cost equivalence property (3.4.1).

In this Section we present a set of coordinates, called normalized

Hessenberg coordinates, in which the CCA yields reduced models which are

cost equivalent. Presenting the properties of the CERs, we conclude this

Section by illustrating the numerical procedure with the aid of the beam

example.

3.4.2 Normalized Hessenberg Coordinates

The generalized Hessenberg coordinates have recieved considerable

attention in the context of model reduction, r9-13], These coordinates

are used to identify the least observable states of a given system, which

can then be deleted to yield an acceptable reduced model. However, these
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least observable states may be highly controllable. But, this
'controllability-information' is not taken into account in either of these _

references. Hence, we enforce a normalization of these coordinates to

include the controllability of the states also in the model reduction

decisions.

* Zefini. or. Normalized Hessenberg coordinates are defined to be

those coordinates in which the given model (3.2.1) has the following

properties.

a) X lim E {x(t) xT(t)} In  (3.4.2)
t- n

b) A J, , >+l, i -1, 2, . p

rank [ Ai 1l 1) = ni+1 I s , 2, ... , p-l (3.4.3) -

n.
where xiR

c) Y

with TC1 -diag 2a,  Q2 an (3.4.4)

2, 2 2
Remarks - 2 >  0

1) (3.4.3) and (3.4.4) Imply the following stricture to (3.2.1a)

i - 11 A12  0 ... 0 1  01

A A A.. 021 22 23 2 2

3 A31 A32 A33 .0 +D 3  w

Ap-II Ap-1,2 Ap-1,3 Ap-l'p xp-1 p-1

p AP A p3 ... App p p

(3.4.5a)
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= Cxc 1  0 0 ... 0 ] (3.4.5b)

2) The model is naturally divided into p 'components' i' i = 1, 2, ... p

of which only the first component x1 is directly observable in a. W4e

will call these components the 'normalized Hessenberg ccmconents' 0

3) The following relation holds

ni 2.n+1 i = 1, 2, ... p-I . (3.4.5c)

(proof can be found in [11)).

4) Clearly, if A. = 0, for some I, then the components {x x

x } are unobservable.

5) At steady state, by definition (3.4.2), the normalized Hessenberg

coordinates (and hence the components) are uncorrelated.

6) The algorithm to transform any given system to the normalized 01

Hessenberg coordinates is included in the CER algorithm of

Section 3.4.3.

We will now present some of the properties of normalized Hessenberg

coordinates in the following theorems.

Theoremn 3.6 @
The component costs of the normalized Hessenberg coordinates are

givyen by

Vt 1 > n

16
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Remark

It follows from theorem 3.6 that the only 'component' that contributes

to the cost function is the first noralized Hessenberg component x.g -.

and that the remaining components xi, i 2,3, ...,p do not contribute to

the cost function.

Theorem 3.7

The component costs associated with the normalized Hessenberg coordi-

nates are minimally sensitive to perturbations in the state weighting

matrix cT c in the cost function.

Remark

Consider the case when the state weighting matrix C TQC in the cost

function is subject to perturbation - this may happen, for example, when

the output matrix C is not known exactly, or when the model is used for

the subsequent modification of the output weighting matrix Q, as in

[3.7]. Theorem 3.7 implies that, in this situation, the choice of the

reduced models in normalized Hessenberg coordinates is minimally sensitive

to these perturbances, since in CCA the model reduction decisions are

based upon the component costs.

3.4.3 CER-Algorithm and Properties.

In this Section we present an algorithm for transforming a system

to normalized Hessenberg coordinates and to extract cost equivalent

realizations by CCA. WIe also present the properties of C-.Rs thus

generated.
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CZR-A agori Z-,;=

STEP I. Read the system matrices (A, D, C, W1 and the weighting matrix

Q. in the cost function.

STEP II.

2a). Compute Xby solving

XAT + AX + D T  
0  . (3.4.7a)

2 2b). Compute eX , the square root of X;

T (3.4.7b)

2c). Compute ey, the orthonormal modal matrix of

e~CT.Cex such that

TTT . i 2 2 2 , 0, 0} (3.4.7c)
e yT Ge c:,~ y= diag (a, 2  '2 n 1

where a12 > 
2  2 > (3.4.7d)

STEP Ill.

3a). Define T I x . (3.48)

3b). Define

A11  Ai2 A c RL2 1  A~2 J = T1  AT1  Ak2  R(n-n )x(n-n1 )

(3.4.9)

n1l xm[ ] =rj-Iv. -

3c). Set i 2, p 2 and nr  n 1
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STEP IV.

4a). Obtain the Singular Value Decomposition of A!_ as

1-1,

A! i L (3.4.10a)

where a= diag (a, a2 a " > >0 (3.4.10b)

and V, R (n-nr)x n,

4b). Define

Ti 0 r i  V1  EVi, V21]  (3.4.10c)

4c). Set nr = nr+ni . If n= n, go to step V.

4d). Define A' = i , A' (3.4.11a)

| n i++ = v2iTA~ V2 i . (3.4.11b) O

4e). Set i = i4l and p = p+l and repeat step IV.

I STEP V.

Define T = Ii T. (3.4.12)

STEP VI.

Apply the transformation

X Tx (3.4.13a)

to obtain the model in normalized Hessenberg coordinates, i.e.,

the model
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z Ax + Vw
(3.4.13b)

y Cx

where

A -TIAT

V a T'1D (3.4.13c)

C-CT

satisffes the specification (3.4.2-3.4.4).

STEP VII.

To obtain a reduced model, retaining r normalized Hessenberg
r

* components, (of order nr n ! n1 ), delete the last (p-r)

components {x, I - r+l, ... , p} from (3.4.13), where x

is partitioned as

OT E T T 9 xTj ;, T, xT x n

This reduced model of order nr Is given by

ZR - ARxR + RW
(3.4.14a)

y CRR ,

where

A0A11  A12  ... 0 - 1

AR- A2 1  A2 2  ... 0 R - 2  (3.4.14b)

* . ". .:

Arl Ar 2  Arr r j

cR - cc, , o, ... 0].

*If (3.4.14) is controllable,.then it is a CER.
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Remark

This algorithm does not guarantee that the resulting reduced

model (3.4.14) is asymptotically stable. The following theorem

includes the stability properties of (3.4.14).

rThozm 3.8 (stability properties of (3.4.14))|0
i) Re (I iAR)}l O, I - 1, 2, ..., n

where Re (-I denotes the real part of C-) and

* Ai(AR) denotes the i-th eigenvalue of AR'

ii) Re (I(AR)} < 0 , 1 = 1, 2, ..., nr, if and only if the

matrix pair (AR, DR) is controllable.

Iii) If J (p) -0, 1 1, 2, ..., I for some i, then for

any

nr_ nj

(3.4.14) is not asymptotically stable, where J.(p) CAJ-Iom

is the J-th Markov Parameter of the full order model.

Remarks

1) From (i) note that none of the eigenvalues of the reduced model lie

in the open right half plane.

2) From (iii) observe that the Markov Parameters of the full order model D -

dictate the asymptotic stability of the reduced models. For single

input single output systems the same observation can be made in the

original version of nodel reduction by Routh Approximations C151.

3) (iii) also implies that, if J () • 0, L - I, 2, ... , i, then for

(3.4.14) to be a CER, the number of components r retained in the
model, must satisfy 0
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r >i.

The cost equivalent realizations obtained by the CER-algorithm have

the following properties.

Teorem 3.9

i) The CERs match the steady state output covariances: I -

lim E{q(t)YT(t) =lim E~(t)yT(t)} (3.4.15a)

and
-T T

lim E{Y(t)y (t)} = lim E((t) t)}. (3.4.lSb)

ii) For

nrj = j , S

J (i) = J ,(p) j = 1, 2, ... , i (3.4.16)

A ') Si

where J (i) CRA -'R is the j-th Markov Parameter of the reduced

model retaining i components.

Remarks.
*1

1) Since

V limr Tr[E(y(t)yT(t))]
t-m

(3.4.15a) clearly implies that VR = V (cost equivalence).

* 2) Consider gi, i - 1, 2, ... , k, the i-th component of y. The RMS

value of y,, defined as

1/2 A E j 2 ()d 11/2(.) [im I E f i ()do]
t1 0
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is a fundamental input-output property of a system and is independent

of any coordinate transformation. It is, therefore, encouraging to

observe from (3.4.15a) that, this fundamental procerty is preserved

by CE.Rs.

* 3) Since matching of Markov Parameters reflects the matching of the

transient response of y and y (16] , (3.4.16) implies that, by

increasing the order of the reduced model, better matching between

the transient response can be achieved.

A note on the coat fuction:

As pointed out in Section 3.3, one may either consider the open loop

cost function V , (defined In (3.3.20)), or an augmented cost function S

Vo, (3.3.15), for the model reduction purposes. Either cost function

can be handled equally well by the CER algorithm, by properly defining

the 'outputs' y and the weighting matrix Q In the cost function. This S

can be achieved as follows.

1) For V V

set y 3 y, the actual output

and Q Q, the weighting matrix In (2.3.8).

2) ForV Vo,

set E YT Zr]

and Q diag {Q, V 1

where V is the intensity of the measurement noise.
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3.4.4 Example

We will illustrate the application of the CER-algorithm with the aid

of the beam example. For illustration, consider the case a = 0. The A

matrix of the model in normalized coordinates is given in Table 3.2.

Note, that since the first Markov Parameter,

j(20) CD - 0

we have D1  0 0, in the input matrix, and consequently I (A11) = A11  O.

Hence, the reduced model retaining the first state (coordinate) is not

asymptotically stable and thereforeit cannot be a CER.

Also, note that since yeR1 , n1 - 1. And, hence from (3.4.5c)

ni = 1, 1 - 1, 2, ...p and thus p - 20. In other words, for this example,

the normalized Hessenberg 'components' are 'coordinates' themselves. -.

In order to determine the desirable order of the reduced model, we

have Table 3.3. The quantity IART /[AR11 measures the observability of

the truncated normalized Hessenberg coordinates. Since none of the

entries of the fourth column of Table 3.3 is small (of the order of 0.1),

it warns us that the CER-algorithm may not yield a'good'reduced model.

For comparison purposes, we select the reduced model of order 6.

We generate two reduced models, one corresponding to B= 0 and the other,

S-. These are respectively denoted by S1 and S2 ' and their describing

matrices are given in Tables 3.4a and 3.4b.
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TABLE 3.2 REPRESENTATION OF THE BEAM MODEL IN

NORMALIZED HESSE'iBERG COORDINATES
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Table 3.2 Representation of the Beam Model in
Normalized Hessenberg Coordinates

Columns 1-10 of the A Matrix

The AA-CER A Matrix (20x20)

1 2 3 4 5 6
1 -1.041E-16 1.019E+01 -8.059E-14 2.427E-14 -3.502E-14 1.169E-16
2 -1.019E-01 -9.166E-01 9.773E+01 -2.196E-13 1.149E-12 -9.594E-14
3 8.254E-14 -9.773E+0l -5.716E-07 -1 .766E101 1.849E-14 6.903E-14
4 -2.566E-14 -3.841E-01 1.766E+01 -4.023E-02 2.870E+01 -3.178E-14
5, 3.11SE-14 2.654E-02 -2.096E-05 -2.869E+01 -1.921E-04 4.440E+0l
6 -1.607E-15 1.230E+00 -9.714E-04 2.577E-01 -4.442E+01 -4.128E-01
7 2.202E-14 -3.810E-02 3.008E-05 -7.981E-03 5.515E-04 -3.355E+01
8 -1.797E-14 4.895E-01 -3.865E-04 1.025E-01 -7.086E-03 -3.284E-01
9 -1.032E-14 8.131E-02 -6.421E-05 1.704E-02 -1.177E-03 -5.457E-02

10 1.593E-14 -2.593E+00 2.047E-03 -5.432E-01 3.753E-02 1.740E+00
11 -2.341E-14 -1.986E-02 1.568E-05 -4.161E-03 2.875E-04 1.333E-02
12 -1.801E-14 2.953E-01 -2.332E-04 6.187E-02 -4.275E-03 -1.982E-01
13 -4.222E-15 9.834E-02 -7.766E-05 2.060E-02 -1.424E-03 -6.599E-02
14 4.945E-16 5.538E-01 -7.531E-04 1.998E-01 -1.381E-02 -6.400E-01
15 -1.609E-14 -9.541E-03 7.534E-06 -1.999E-03 1.381E-04 6.403E-03
16 -1.603E-16 -6.881E-01 5.434E-04 -1.442E-01 9.962E-03 4.618E-0'
17 *4.693E-14 -4.369E-02 3.450E-05 -9..154E-03 6.326E-04 2.932E-02a18 -1.129E-l5 7.837E-01 -6.189E-04 1.642E-01 -1.135E-02 -5.2592-01
19 4.353E-14 2.241E-02 -1.770E-05 4.696E-03 -3.245E-04 -1.504E-02
20 5.9752-16 1.646E-01 -1.300E-04 3.449E-02 -2.384E-03 -1.1052-01

7 8 9 10
1 -1.916E-14 -7.614E-16 1.186E-14 1.755E-15
2 1.032E-12 1.732E-15 -11.192E-12 -1.278E-14
3 -6.973E-15 -1.881E-14 6.905E-15 6.582E-15
4 -1.843E-13 -1.211E-14 -8.62SE-14 3.581E-15
5 -1.595E-14 9.422E-14 6.078E-14 -6.037E-14
6 3.358E+01 1.227E-14 -1.034E-14 -8.506E-15
7 -3.958E-04 -3.630E+01 8.O1OE-15 -8.522E-14
8 3.631E+Ol -6.534E-02 3.016E.+01 -6.236E-14 0
9 1.690E-03 -3.018E+01 -1.803E-03 . -5.456E+01

10 -5.388E-02 6.922E-01 5.468E+01 -1.833E+00
11 -4.127E-04 5.303E-03 8.810E-04 4.565E.1
12 6.136E-03 -7.884E-02 -1.310E-02 4.176E-01
13 2.044E-03 -2.525E-02 -4.262E-03 1.101E-01
14 1.982E-02 -2.546E-01 -4.230E-02 1.349E'00 
15 -1.983E-04 2.548E-03 4.232E-04 -1.349E-02
16 -1.430E-02 1.837E-01 3.052E-02 -9.732E-01
17 -9.080E-04 1.167E-02 1.938E-03 -6.179E-02
18 1.629E-02 -2.092E-01 -3.476E-02 1.108E+00
19 4.658E-04 -5.985E-03 -9.942E-04 3.170E-02
20 3.421E-03 -4.396E-02 -7.303E-03 2.323E-01
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Table 3.2 (cont'd)

Columns 10-20 of the A Matrix

11 12 13 14 15 16
1 2.105E-14 -2.603E-15 2.729E-15 2.749E-15 1.299E-14 -6.390E-15
2 -1.224E-12 6.063E-14 3.979E-13 -1.728E-14 -5.115E-13 8.934E-15
3 9.925E-15 -1.00lE-14 -2.995E-14 5.532E-14 2.837E-14 2.061E-15
4 1.772E-14 4.215E-15 -4.354E-14 -3.952E-15 -3.165E-14 7.745E-15
5 6.245E-14 3.744E-14 1.601E-13 -l.237E-14 -1.425E-13 1.071E-14
6 -5.806E-14 -5.397E-16 -8.749E-15 -6.713E-15 1.818E-13 1.206E-15
7 1.513E-14 2.304E-14 -6.048E-14 -8.795E-04 -1.996E-13 1.280E-13
8 8.875E-14 3.428E-14 1.644E-13 -1.511E-14 -3.347E-15 -.2322E-15
9 -1.242E-13 -2.023E-13 -1.093E-14 9.185E-14 1.594E-13 -2.225E-14
10 -4.668E+01 -1.239E-13 -3.509E-13 1.144E-13 3.217E-13 -1.668E-13
11 -1.076E-04 3.638E+01 -8.698E-15 2.988E-14 4.832E-14 8.995E-14
12 -3.638E+01 -2.378E-02 -3.138E+01 7.253E-14 3.534E-14 -2.187E-14
13 1.065E-03 3.136E+01 -2.638E-03 2.627E+01 -1.98E-14 2.210E-13
14 1.033E-02 -1.536E-01 -2.632E+01 -2.481E-01 -2.432E+01 6.678E-15
15 -1.034E-04 1.537E-03 5.118E-04 2.433E+01 -2.433E-05 1.380E+01 0
16 -7.455E-03 1.108E-01 3.691E-02 3.580E-01 -1.380E+01 -1.292E-01
17 -4.734E-04 7.038E-03 2.344E-03 2.273E-02 -2.274E-04 2.286E+00
1 8.491E-03 -1.262E-01 -4.204E-02 -4.077E-01 4.079E-03 2.942E-01
19 2.428E-04 -3.611E-03 -1.202E-03 -1.166E-02 1.167E-04 8.414E-03
20 1.784E-03 -2.652E-02 -8.832E-03 -8.566E-02 8.569E-04 6.180E-02

17 18 19 20
1 -4.692E-14 -1.568E-15 -4.167E-14 -2.129E-15
2 1.265E-12 1.631E-14 9.986E-13 5.580E-14
3 4.026E-14 -5.907E-15 3.341E-14 -9.462E-15
4 1.055E-13 -1.363E-16 2.972E-14 -3.744E-16
5 -8.858E-14 -9.849E-15 -9.141E-14 -4.219E-14
6 -1.097E-13 1.545E-15 -2.396E-13 -4.629E-15
7 -9.056E-15 1.504E-14 -1.138E-13 7.441E-16
8 3.076E-13 7.694E-15 -2.680E-14' -7.462E-16
9 1.208E-13 2.708E-15 -1.204E-13 -1.028E-14

10 -3.504E-13 1.665E-14 -3.470E-13 1.338E-13
11 1.506E-15 4.107E-15 6.375E-14 -4.483E-14
12 3.507E-14 2.459E-13 3.256E-14 -3.790E-14
13 3.570E-14 -.1686E-14 -6.993E-14 1.160E-14
14 -9.134E-14 -2.507E-14 -9.050E-14 -1.273E-14
15 1.734E-14 3.077E-14 -2.500E-14 -1.401E-14
16 -2..02E-00 1.898E-15 1.416E-14 9.S11E-16
17 -5.207E-04 -1.078E-01 1.099E-15 1.425E-14 S
18 1.80E-01 -1.575E-T1 -1.091E-O1 3.553E-15
19 5.342E-04 1.090E-01 -1.370E-04 -5.32E,00
20 3.924E-03 -7.039E-02 5.826E+00 -7.394E-03
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Table 3.2 (cont'd)

The D and C Matrices

The 00-CER Vector (20xl)

1 0.0

4 -2.837E-01

5 1.960E-02I
6 9.086E-01
7 -2.814E-02
8 3.615E-01
9 6.006E-02

10 -1.915E+00
11 -1.467E-02
12 2.181E-01

* 13 7.263E-02
14 7.044E-01

* -. 15 -7.047E-03
16 -5.082E-01
17 -3.227E-02
18 5.788E-01

CK19 1.655E-02
20 1.216E-01

- CI The CC-Cer Vector (lx20)

1 .2 3 4 5 6
-7.081E+00 6.226E-18 -3.485E-15 -1.446E-16 7.0O10E-15 6.260E-19

7 8 9 10 11 12
5.397E-15 7.958E-17 -5.537E-15 -1.633E-16 -4.310E-15 1.608E-16

*
17 18 19 20

1.155E-14 1.022E-16 1.OOOE-14 2.587E-16
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TABLE 3.3

'4-IIARL[aH I[ART1 _I IIR IIAR"I

2 10.2 97.73 9.5785

4 1.803 28.70 15.9236

6 1.521 33.58 22.0751

8 1.362 30.16 83.3333

10 1.323 46.68 35.3357 5

12 1.264 31.38 24.8139

14 1.193 24.32 20.3666

16 1.028 23.02 22.3714

18 1.021 10.91 10.6838

_ _ _ _ _._ _ _ _

6 0
IIAR[I = min (IX i (AR)t

+ IIARTI max {Xi(AR RT)} 
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TABLE 3.4a

REOUCED MODEL, S1

THE PLANT MATRIX, AR (6 by 6)

1 2 3 4 5 7

1 -1.041 e-16 1.019 e+O1 -8.059 e-14 2.487 e-14 -3.502 e-14 1.169 e-16

2 -1.019 e+01 -9.166 e-01 9.773 e+01 -2.196 e-13 1.149 e-12 -9.594 e-14

3 9.254 e-14 -9.773 e+Ol -5.718 e-07 -1.766 e+Ol 1.849 e-14 6.903 e-14

4 -2.666 e-14 -3.841 e-Ol 1.766 e+Ol -4.023 e-02 2.870 e+Ol -3.178 e-14

5 3.115 e-14 2.654 e-02 -2.096 e-05 -2.869 e+OI -1.921 e-04 4.440 e+O1

6 -1.607 e-15 1.230 e+00 -9.714 e-04 2.577 e-01 -4.442 e+Ol -4.128 e-01
0a

THE INPUT MATRIX, DR (6 by 1)

1 0.

2 -1.354 e+00

3 1.069 e-03

4 -2.837 e-Ol

5 1.960 e-02

6 9.086 e-O1
S

THE OUTPUT MATRIX, CR (1 by 6) j
0

1 2 3 4 5 6

1 -7.381 e+00 6.225 e-18 -3.485 e-15 -1.446 e-16 7.010 e-1S 6.250 e-19
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TABLE 3.4b

REDUCED MODEL, S2

THE PLANT MATRIX, AR (6 by 6)

1 2 3 4 5 6

1 2.082 e-17 -1.109 e+O1 1.856 e-14 -2.300 e-14 -1.056 e-14 -6.632 e-17

2 1.109 e+O1 -8.803 e-O1 9.748 e+Oi -6.445 e-14 -2.694 e-13 9.011 e-14

3 -1.966 e-14 -9.748 e+O1 -1.774 e-06 -1.851 e+O] -1.157 e-13 -8.282 e-14

4 -3.572 e-14 -6.976 e-O 1.851 e+O1 -1.382 e-O1 -2.754 e+Ol -4.179 e-14

5 1.493 e-14 -1.997 e-02 2.835 e-05 2.753 e+O1 -1.133 e-04 4.288 e+Ol

6 2.711 e-15 -1.058 e+00 1.502 e-03 -4.191 e-01 -4.289 e+Ol -3.177 e-O1

THE INPUT MATRIX, DR (6 by 1)

1

,1 0.

2 -1.327 e+O0

3 1.884 e-03

4 -5.258 e-O1

5 -1.505 e-02

6 -7.972 e-O

THE OUTPUT MATRIX, CR (1 by 6)

1 2 3 4 5 6
1 -6.519 e+00 4.257 e-17 -5.902 e-15 1.750 e-17 -4.935 e-15 -1.337 e-16 S
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3.5 Comoarison and Discussions

+ 3.5.1 Spectral Analysis.

Fundamental to every model is its modal properties, the eigen-

values and eigenvectors. In this section, we compare the eigenvalues of

*the reduced model obtained by MCA and CER-algorithms.

Since, in MCA, a subset of the original modes are retained in the

reduced model, the eigenvalues of the reduced models are also a subset of

the eigenvalues of the original full order model. This information is

provided in Table 3.5, where nr = 20 denotes the full order model. Observe

that for nr a 2,20, both S I(=0) and $2(,-) retain the same modes, and

hence as mentioned previously, the modeling-problem and the control-problem

are separable in this case, (for nr a 2,20).

For cost-equivalent realizations obtained by the CER-algorithm, it

is not necessary that the eigenvalues of the CERs be a subset of the

original eigenvalues. Depending upon the order of the CER, sor.e or none

of their eigenvalues may be contained in the set of the original eigenvalues.

Nevertheless, by theorem 3.8, none of these eigenvalues lie in the open

right half (unstable) complex plane. In Fig. 3.2a and Fig. 3.2b, the

modal frequencies (w) and their damping factors are plotted for the costV

equivalent realizations of orders nr a 20, 18, ..., 2. Figs. 3.2a and 3.2b

-correspond respectively to 8 = 0 and 3*-. Also provided in these figures

are the corresponding modal cost sequence of the modes (of the full order

model) - this is indicated by the numbers witnin parenthesis in the first

column.

Observe that the changes in the damping ratio occur mostly at the

low frequency range, and gradually extend to high frequency range as

S the order of the CER reduces. Furthermore, for both the cases a = 0 and
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TABLE 3.5. EIGEIVALUES OF THE REDUCED MODELS - MCA 7]

FREQUENCY, (RAO. SC )

n Sl~s=0)

r 2

20 1,9,4,16,25,36,64,100,49,81t 1,4,16,25,49,9,100,64,36,81

18 1,9,4,16,25,36,64,100,49 1,4,16,25,49,9,100,64,36

16 1,9,4,16,25,36,64,100 1,4,16,25,49,9,100,64

14 1,9,4,16,25,36,64 1,4,16,25,49,9,100

12 1,9,4,16,25,36,64 1,4,16,25,49,9

10 1,9,4,16,25 1,4,16,25,49

8 1,9,4,16 1,4,16,25

6 1,9,4 1,4,16

4 1,9 1,4

2 1 1

i-All these modes have the same damping factor of .005 I 0

The frequencies are ordered in the decreasing magnitudes of their
modal costs.
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S--, the CERS tend to retain the high frequencies, which is also a tendency

observed in Routh Approximation methods [3. 8].

Hence, in this example, the CERs tend to retain the high frequency

spectrum, whereas the reduced models obtained by MCA retain the low frequency

spectrum. The effect of this difference clearly shows up in the time response

analysis of the reduced models in the following section.

3.5.2 Time Response.

This section compares the time response of the reduced models of order

6 (generated in sections 3.3 and 3.4) with that of the full model contain-

ing 10 modes. The input signals used are an impulse with unit strength,

and a step with unit magnitude. Figs. 3.3a, b and Figs 3.4a, b display

the results.

The 'system differences' plotted in these figures (1) ((ii)) are the

differences between the output (measurement) generated by the reduced
*

models and the full order model. Figs. (a) correspond to impulse response

and Figs. (b) correspond to step response.

Observe, from Figs. 3.3a and 3.3b, that the system differences have

high frequency oscillations. This is due to the fact that the MCA-odels ten-

ded to retain the lower frequencies, and hence the error (difference) is predomi-

nantly due to high frequency modes. Also note that the model S,' which corres-

ponds to 0 - 0, generates the output more accurately than S. This is to

be expected since S1 was generated with emphasis on the output (a a 0).

This observation is reversed in the case of measurement errors, which is

again expected.

The same trend is obser-ed in Figs. 3.3b (i) and (ii). These reducad

models, do not retain the d.c. gain of the full model, except model S1 in

Fig. 3.3b (i).

188

..

I .- -° . * . ...



FIG..3-REDUCED SYSTEM DIFFERENCES 
-IMPULSE

CUTPUp
AM 

W18 00i

amam,

l~ R~ u E?~ TT IME (sEC )

MEd4UVI

Ji C

TIMIE IsEC;



F'IG.33b REDUCED SYSTEM DIFFERENCES - STEP

OUTPUT
--- - - - -TA

-=

Il i , I ro' Is t

" ' O fi' ll

If

.1 (1.1 aSO
Jill

45.00 5.0 15.00 M.0 35.00 109.21 g.00 5.00 7i=W

TIME (SEC)

MEFMAREMENT

d. 40 0M dW 3

* --

TIME ISEC•

190

.0 a-.. . . . .o • .• . . .• .• , , • ° . . - - . . , % , . "_. o o " o• o .,



PIG34 .*CER REOUCED SYSTEM* OIFFERENCES -IMPULSE

-am-

-5 .q.o 2.0 4.W0.0 65W 7.

TIM (SEC)0

4.00m 5.00 15.00 25.00 $.0 '.0 5.0 5.00 75.00

TIME ISECI

.q191



FIc,.3.4b. CER REDUCED SYSTEM DIFFERENCES -STEP

OUTPUT ~ ~ ;

. o (. i)w2 .o 35 W 4 . 500 6 .0 7 X

TIME CcEC)

MERSUREMENT ~, i

11 t

4.0

TIM'E (SEC)

192



* .

The time response errors of the CERs to impulse and step inputs are

plotted in Figs. 3.4a and 3.4b. The oscillations in these figures are of '--.

*lower frequencies (than those in Figs. 3.3) since the CEPs had eigenvalues

with higher frequencies. Both the output error plot (Figs. 3.4a (i)

- and Fig. 3.4b(i) and the measurement error plot (Figs. 3.4a (ii) and

-: Fig. 3.4b (ii)) exhibit identical behavior. None of these models retain

-- the d.c. gain of the full model.

In comparison, based upon the time responses, the reduced models of

order 6 produced by MCA, seem to be superior to the CERs of order 6.

3.6 Conclusion

This Section has presented and analyzed two model reduction schemes:

(1) Modal Cost Analysis, and

(2) Cost Equivalent Realizations.

Both these schemes are shown to yield reduced models whose cost perturbation

- indices can be predicted exactly, i.e. q = q. In addition CERs have

" (in fact they are defined by) the property q - 0. However, formecha-

nical systems, for which modal data is available, MCA is much simpler

*. to implement than the CER-algorithm.

Both these schemes are special cases of Component Cost Analysis, which

generates reduced models based upon a quadratic cost function. The role of

- this cost function has been studied and different cost functions have

been presented in this section.

The simply supported beam of Section 2 has been used as a numerical

example to compare the above two model reduction schemes, and also to

study the effect of different cost functions on the reduced models. For

S this example, it turns out that the reduced models by MCA are superior
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TI

to the CERs. It has also been observed that the CERs tend to contain hiqh

frequencies, while the reduced models produced by MCA retain low frequencies.

As a result, it is shown by simulation, that the trajectory errors associated

with CERs are smoother than the errors associated with the MCA-reduced models.

However, the magnitude of the errors is larger for CERs.
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4.0 DESIGN AND EVALUATION OF CONTROLLERS

4.1 Introduction

As mentioned in the beginning of this report, the purpose of the

reduced models obtained In the previous section is to design a low-order

controller based upon the approximate models. The situation at hand can -

0

be explained with the following diagram.

w - Sin)

,, .
S U REDUCT ION]

SO z

.... .... ...

.............C'O'NTROLLERI

I°

Fig. 4.1. Representation of Controller Design

Based Upon Reduced Models
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The process illustrated in Fig. 4.1 consists of two steps:

(1) Model reduction (this was the subject of Section 3), and (2) con-

troller design (subject of the current section). In Step (1), the

given model of order n is reduced to an approximate model of order nr< n.

The output and the measurement signals (which are now only approximate)

are indicated respectively by y and z. Step (2), now assumes that this

- reduced model is exact and designs a controller to minimize the follow-

ing cost function.

lm t t 2 2t-- E {( y(a) 1 i ()11RIa 411
a4. l

In other words, step (2) assumes that y and z are exact and not approxi-

mations. (This is indicated by the dashed lines in Fig. 4.1.) But in

reality, the controller S (n ) receives the signals z and not z, andC r
drives the actual 'model' S(n) and not S(n ), (as indicated by the solid

r
line). Furthermore, the cost function (performance objective) one is -

interested in is

1m I r ft. .lly(1)ll2 + oil u(a)I 

t.-tE jya)j +I~~)IIda (4.1.2)t0 Q R

and not (4.1.1). Naturally then, the errors in z and y dictate the

aot=Z performance of the controller.

* The purpose of this section is to present this design and evaluation

procedure and to illustrate the effect of errors in the reduced model on

the performance of the controller. We will use the four models generated

* in the previous section as the reduced models.

In Section 4.2, we present the standard controller design techniques

by Linear Quadratic Gaussian Theory, and present the evaluation procedure

in Section 4.3. Section 4.4 applies these techniques to the beam example.
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4.2 LOG-Controller Desicn

The Linear Quadratic Gaussian (LQG) approach [8] to control sys-

tern design for stochastic models has gained increasing acceptance as a

practical design tool. Some of the reasons for the wide acceptance of

LQG approach are due to easily derived analytical results, mathematical

tractability and some guaranteed robustness properties in terms of gain

and phase margins.

Since this is a standard text book theory (Ref. [8] , for example),

we only summarize the steps needed for controller design, for complete-

ness.

We assume that a stabilizable and -detectablet model Is available

in the following state space form.

XR" ARxR BRu + DRW
fig .C R(4.2.1)

z MRX + v. j

z MRxRv

n
with the vectors xRCR 9 U . leg w c • c . and .v, c . The

process noise w and the measurement noise v are assumed to be uncorrela-

ted zero-mean gaussian white noise processes, with intensities W and V

respectively. (If needed, we can assume random initial conditions for

the states x but, for the infinite-time design problem considered herein,

this becomes unnecessary). We wish to design a controller of order nr,

which minimizes the cost function

0.. urn E -o 24 Y0ilQ+ 1U(a) 11R} da (4.2.2)

tboth the uncontrollable subspace and the unobservable subspace are

asymptotically stable.
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For this problem, the LqG-theory yields the following optimal controller.

€ a Acc + Fz x c c r (4.2.3a)

u = Gxc

where

Ac -(AR + BRG -F R)  (4.2.3b)

mx nr nr xZ
and where the control gain G c R and the filter gains F c R

are given by

G 1 R BTK (4.2.4a)-- 1

F - PMRvl (4.2.4b)

with K satisfying the control Riccati equation

K AT 1 -1 .T TKAR + A K B RK + CRQC a (4.2.4c)

and P satisfying the filter Riccati equation

R4 +RP -PMWV
1 MRP + DRWD 0R42.d

Thus, to obtain the optimal controller, the following steps are needed.

AZg ozvItI for LG controZZa 8dei.
p S

Steo. Compute K and P by solving the qiccati equations (4.2.4c)

and (4.2.4d).

S tea 2. Compute the controller parameters according to (4.2.2b), (4.2.4a)

and (4.2.4b).
The controller (4.2.3), obtained by the LQG-theory minimizes the

cost function (4.2.2) which is only an approximation of the actual cost
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function (4.1.2). The following section describes the evaluation of

this controller with respect to (4.1.2) and the full model S(n). 4_.

4.3 Evaluation

Note that in (4.2.3a) we have indicated that the controller is

driven by z which is what the LQG-theory assumes. However, when the -

controller is used to drive the full order model, the following repre-

sentations result. - -

n
i a AcX + Fz * x R r (4.3.1)

C Cc c

u a Gxc

Ax + Bu + w; xC n le

y = Cx (4.3.2)

z U Mx + V.

For the evaluation purposes, we wish now to compute the following quan-

titles, which are defined as shown.
Regulation Cost, V(y) [im I h t  2 ' "

Control Energy, V(u) = i 1 E I u(O) 11 da] (4.3.4)

RMS value of the 1-th output (1 = 1 2. k)-

Vl/ 2(yi) a[r I Eo y2 (a) d (4.3.5)

RPS value of the Input energy at the i-th actuator (i • 1,2,..., m)

V112 (u1) im I E u2 (ar) da'(4.3.6)
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The first two quantities, regulation cost and the control energy,

offer a macroscopic evaluation of the closed loop system. The RMS

values V 1/2(y i ) and V1 12 (u.), however, are of more importance, since in . -

general, the mission requirements are given only in terms of the RMS

values of the outputs and the RMS values of the maximum allowable con-

trol energy at each input channel. Moreover, violation of any of these

specifications does not always reflect in V(y) and/or V(u).

We now present expressions for the computation of these quantities,

based upon the following 'augmented' representation of the closed loop

system.

AX +w a (4.3.7a)
Xa a a +awa

CaXaYa a"

where
"xcT] "+nr

T xT 'x T a  r.

Xa .c a

TA 1wT vT c Rq+4 (4.3.7b)
Wa v W

T_ CyT, uT ]  ; a k +m  :-

A~a  a ..
A a T

AA €

Oa L 0] (4.3.7c)

a
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Th eorem 4. Z

The quantities (4.3.3 -4.3.6) are calculated as follows.

V(y) =Tr[CTQCX11  (4.3.8a)

V(u) Tr[GTGX221 (4.3.8b)

VI/ 3)-CT X11ci1 /2; 1 = 1929 ... 9 k (4.3.8c)

1 / u =[gTx 12 i= 1,2, m.,r (d.3.8d)

where

J. i-th row of C (..a

*i-th row of G T43.b

and where

= 1 liVO E (x(t) x (t)1 (4.3.10a)

X2 t. E (xc(t) xc tI (4.3.10b)

are obtained from partitioning

Al m T
X a =t-e E~xa Ct)xa(t)} (4.3.10c)

as Xa X~ x12 (4.3.10d)

xT x
L12 22-

which satisfies,

0 T 0
a a a a aa a

whe re

0 Wa -diag (W, VI .(4.3.10f)
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For the evaluation and comparison purposes, one follows these

steps.

Step 1: Select a value of o and design an optimal LQG-controller of

order n. n r' the order of the reduced model (i.e. use the

algorithm for LQG-controller design, for a specific value of

P).

Step 2: Evaluate the quantities V(y), V(u), Vl/ 2(y i ) and Vl/2 ui),

according to Theorem 4.1.

Step 3: Repeat Step 1 and Step 2 for different values of o, until

sufficient data is collected.

Step 4: Draw the 'performance-plot', as shown in Fig. 4.2.

Fig. 4.2 Performance Plot

S<n- "

20

I-o:?. : .

nc <n .I .

CONTROL ENERGY Vu)-

F202.' .

0 5
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Note that when nc = n r n (i.e., when S (nc  n) is designed based upon

S(n)), the LQG theory promises that the performance curve will asympto-

tically decrease (dotted line). However, for nc < n, the effect of model 7 1
errors (due to y(t) $ y(t) and z(t) $ z(t)) deteriorates the performance
with increasing control effort, and eventually drives the closed loop

system to instability. Moreover, since the effect of model errors on

the performance increases with increasing control energy, the difference

between these performance curves (for nc = n and nc < n) also increases,

as shown in Fig. 4.2.

Such performance plots can be generated to compare different reduced

models (and/or different model reduction schemes) in the closed loop

situation, as is done in the following sections where the reduced models

generated in Section 3 are used for numerical simulation.

4.4 Examole

The following four reduced models of the simply supported beam are

compared.

1. SI-MCA: The reduced model generated by MCA, for B = 0, of

order nr 6.

2. S2-MCA: The reduced model generated by MCA, for B--, of order

*~ ar 6.
3. S]-CER: Cost-Equivalent Realizations of order nr = 6, for a = 0.

4. S2-CER: CER of order nr 6, for 0--.

The order of the controllers designed from all these reduced models is

n a 6, and the evaluation model S(n), used for the evaluation purposes

is the full 10-mode model with n u 20.
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Since the example considered is a single input single output system

(k u 1, m - 1), the R!S values of the inputs and outputs are given by __

V(y1 ) - V(y) (4.4.1a)

and
V(u1) V(u) (4.4.1b)

Hence, only the plot of V(y) vs. V(u) is presented in Figs. 4.3a and 4.3b.
- - Also compared in the plots are the following models.

5. FULL OROER: The full order evaluation model, i.e. n r - n * 20.

6. Sl-MCA; nc-2: MCA-reduced model of order 2, for 0 - 0.

7. SI-CERn n:2: CER of order 2, for 0 - 0.

The curve corresponding to the full order model serves as a reference,

since by LQG-theory, there exists no other controller (of any order) that

can perform better than the LQG-optimal controller of order 20. i ;.
Observe from Fig. 4. 3 that for low control energy, neither the choice -

of the reduced models nor the schemes of model reduction, Influence the

performance of the controllers. This is expected since In low bandwidth

controllers the effect of model errors is attenuated by the low control

gains. However, for high bandwidth controllers, the choice of the reduced

model does play a significant role.

Of the four reduced models, Sl-MCA, S2-MCA, Sl-CER and SZ-CER, all

of order 6, the controllers designed based upon S2-CER yield the worst

result, driving the closed loop system unstable for a control energy lar-

ger than 1.OE-03 units. For the comparison of the remaining three models,

a magnification of Fig. 4.3a is presented in Fig. 4.3b. An obvious con-

clusion from Fig. 4.31is that for the design of controllers of order 6,

the reduced models generated by MCA are preferable.
2
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FIG 4.3a PERFORMANCE PLOT
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FIG 4,3b PERFORMRNCE PLOT
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Furthermore, the models generated by both MCA and CER-algorithm

corresponding to 8 0 , consistantly yield better controller designs,

than those for 0 -, contraryto the expectation that the 'a--' models

would yield better designs at high control energy levels. This contra-

diction may be attributed to the fact that the filter gains (the mea-

surement gains in the controller) are small, thereby attenuating the

errors in the measurement signals generated by the reduced model. The

spectrum of the filter, given in Table 4.1, reflects this 'small' filter

gain, since the spectrum is essentially the open-loop spectrum.

Table 4.1 Spectrum of the Full Order Fklter

0 Spectral Decomposition of Filter

Real Part Imaginary Part Frequency Damping Time Const.
(Hertz) Ratio (Sec/Rad)

-4. 00233E-01 1.11204E+00 1.88101 E-O1 .33864260 2.49854E-LCO

-2.03656E-01 3.98795E+00 6.35528E-01 .05100151 4.91023E+.00

-1.43274E-01 1.60017E+O1 2.54686E+00 .00895327 6.97965E+00

-1.43620E-01 2.49988E+01 3.97876E+00 .00574496 6.96283E+00

-5.19468E-02 9.00149E+00 1.43266E+00 .00577081 1.92505E+01

-1.81831E-01 3.59999E+01 5.72964E+00 .00505081 6.49961E+00 I
-2.54960E-01 4.89996E+01 7.79863E+00 .00520324 6.92219E+00

-3.22104E-01 6.39990E+01 1.01859EO1 .00503290 6.10458E+00

-4.05784E-01 8.09991E4Ol 1.28916E+0l .00500968 2.46436E-.CO

-5.02495E-01 9.99988E+01 1.59155E+01 .00502495 1.99007E+00

To study the effect of the order of the controller, the curies cor-

responding to S1-MCA (nC * 6) and S1-MCA (n€  2) can be compared.
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rDue to the smaller order of Sl-MCA (n 2), the effect of errors on the

controllers is more pronounced. This can be observed from the fact that

the controllers designed based upon Sl-MCA (n = 6) remain stable over

a wider range of bandwidth.

However, the controllers (based upon Sl-CER, n€ = 2) remained stable AN

for all values of bandwidth attempted in this simulation. This is due to

the fact that, for this beam example, the dimensions of the 'most' obser-

vable and 'most' controllable subspace is only 2. Now, since in CER-

algorithm, the controllabl.ity is normalized by making X - In (3.4.2),

the dimension of the above subspace 1k indicated by that nr for which

the ratio I ART1 /i ARII In Table (3.3) is the smallest. Note, from

this table that the entry II ARTII/l1 AR!1 is the smallest for nr - 2.

Thus the CER of order 2 deletes the 'nearly' unobservable and uncontrol-

lable subspace, thereby reducing the model errors. Hence, the control-

lers designed based upon this model remains stable for a wider range of

bandwidth.

In conclusion, then, if the specifications on the RIS valuesd S

VI /2(yl) < 3, and

V /2(u1) _15

is acceptable, then one would pick the controller corresponding to the

minimum point of the curve Sl-CER, nc - 2, at which point, V(y) * 8.6962

and V(u) * 108.13. This controller not only meets the specifications

but also is more robust and requires less hardware, since the order of _

the controller is only two.
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4.5 Conclusion

This section has presented the controller design technique based j

upon reduced models and has also offered physically motivated metrics

and expressions for calculating them, for the evaluation of the control- I
- , l e r s .]

The comparison of different controllers has been presented with

* the following points in mind.

1) The influence of model-reduction scheme,

2) Effect of order of the model, and

3) The role of cost function for the model reduction process.

The conclusions based upon the beam example are:

1) At low bandwidth of the controllers, the influence of model

reduction schemes is not significant. But at high bandwith, the

performance of the controllers depend, remarkably, on the model

reduction scheme adopted. For the sixth order controller, of

the MCA and CER-algorithm used for model reduction, MCA is more

reliable.

2) The effect of the order of the reduced model is significant

only at high bandwidth. In general, in the case of MCA, the

smaller the order of the model, the worse is the performance

K'" of the controller which is designed based upon this model. S

However, in the case of CER this observation does not seem to

hold, as is evidenced by SI-CER, nc - 2 curve. The metric that

dictates the performance of the controller seems to be the term

IIARTH/IIARII of Table 3.3 , which reflects the observability

and controllability of the subspace that is deleted from the

* full order model.
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3) We expected the ' models to yield better high bandwidth

controllers. But none of the 's *- controllers

performed better than the 'B = 0' controllers. We conjecture

that this could be due to the low filter gains. ,

2 1* -S-

* S
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5. APPLICATION: SOLAR OPTICAL TELESCOPE

5.1 Description

The Solar Optical Telescope (SOT) considered is schematically repre-

sented by Fig. 5.1. The SOT is modeled by finite element methods as

follows.

+1 2 n = (u+w) (-.1n.,i +  2;i,,,i . i  (5. I. l )._.

f- 1, 2, ..., 44,

where wi is the natural frequency and C, is the damping factor of mode i,

(nl , n2 and n3 represent the rigid body modes; w, = 2 = w3 = 0). There

are eight 'noisy' force actuators whose control forces u, ..., u8 act

in the z-direction, located as shown in Fig. 5.1. The actuator noise m

(assumed to be white)is denoted by w and has intensity W = 10"4 18 New2.

The frequencies "i are given in Table 5.1, and the damping ratios are

taken as = .001, i = 4, 5, ... , 44, and i = 0, i 1 1, 2, 3, corres- 0

ponding to the rigid body modes.

The variables to be controlled are LOS(x), LOS(y) and defocus, where

LOS(x) (LOS(y)) is the angular displacement error of the optical line of

sight in x- (y-) direction, and defocus is caused by changes in the

length of the optical axis (deflections in the z-direction). These

* variables are related to the modes ni by

44Y i cin (5.1.2)
i l

where yT = (LOS(x), LOS(y), defocus}. The control objective is then

written as

V= liraI E + IIY(')II + pIlu(a)L d (5.1I.3)
V lmt Q RI r(513* - 0
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FIG. 5.1 SOLAR OPTICAL TELESCOPE STRUCTURE

212



TABLE 5.1 MODAL FREQUENCIES

Mode # Freq(Hz)

1 0
2 0
3 0
4 .9136e+O
5 .1654e+l
6 .19g3e+l
7 .2092e+l
8 .2783e+l
9 .3630e+1
10 .3652e+l
11 .7688e+l
12 .8171e+1
13 .8466e+l
14 .1081e+2
15 .1142e+2
16 .1143e+2
17 .1485e+2
18 .1878e+2
19 .1995e+2
20 .2128e+2
21 .3243e+2
22 .3305e+2
23 .4948e+2
24 .5101e+2
25 .5250e+2
26 .5386e+2

627 .5520e+2
28 .5532e+2
29 .7225e+2
30 .7997e+2
31 .8498e+2
32 .8618e+2

*33 .8898e+2
34 .9836e+2
35 .1010e+3
36 .1039e+3
37 .1052e+3
38 .1078e+3
39 .1120e+3
40 .1198e+3
41 .1494e+3
42 .1534e+3
43 .1628e+3
44 .1657e+3
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where the output weighting matrix Q is chosen as Q - diag (1, 10, 10"

to indicate that the LOS-errors about the y-axis are most critical to

the experiments, and the control weighting matrix R is chosen as R - 189

to reflect that all the actuators are equally weighted.

The available measurements for the control law implementation are

z y +v, zc 3  (5.1.4)

where the disturbance v is assumed to be a zero mean Gaussian white noise

process with intensity

V a diag (10"13, 10"13, 10
"15

to reflect the uncertainties in the measurements.

The modal data bi, c1, 1 - 1, 2, ... , 44 is provided in Table 5.2.*

To summarize, the SOT is modeled in its modal coordinates as follows.

n 2 h bT (u+w) ; I - 1 , 44

44
Y ci (5.1.5)

z =y + v

with the performance objective given by (5.1.3).

Now, in state-space formulation, the order of the model (5.1.5) is

88. The LQG-optimal controller for this problem would also be of order

88, which is too large for practical purposes. Hence, the design of

a feasible (of acceptable dimension) controller requires a reduced order 0

controller design technique. We will adopt the MCA and CER-theory for

such controller design in this Section.

*Table 5.2 is available from the author.
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" 5.2 Reduced Models

5.2.1 Modal Cost Analysis.

We use the following open loop cost function for obtaining reduced

models of the SOT.

,-.',I/o Vy + OVz '
0 y z

where V and V are defined in (3.3.16a) and (3.3.16b) respectively. Two
y

reduced models are generated, one for o - 0 and the other for . The

results are presented in Fig. 5.2a and Fig. 5.2b.

Since both the first two rigid body modes (nl, n2) are observable

and controllable, and have zero frequencies (w1 - w2 a 0), by the modal

cost formula they have infinite costs. Hence, by modal cost rule these

are the most significant modes and are thus retained in the reduced models.

On the other hand the third rigid body mode (i3; rotation about z-axis) is

not observable, and, hence has zero modal cost. Therefore n3 will not

be retained in the reduced models.' Due to the infinite costs associated

with q1 and n2, these modes are omitted In Fig. 5.2.

Observe that if the order nc of the desired controller is four, then

for any value of o in Vo , one would obtain the same reduced model (namely

retaining the first two second-order rigid body modes, n1 and n2) and
0

hence get the same controller. Thus, for nc * 4, the modeling problem

and the control problem are separable. However, this separation does

not hold for nc > 4, which can be observed from the change in the modal

0 sequence for s a 0 and S-, - this change occurs due to the fact that

(3.3.23b) is not satisfied.

The following two reduced models of order nr * 10 are generated for

the subsequent controller design: S
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1) Sl-MCA: retaining the first five most significant modes

(2 rigid and 3 elastic) corresponding to a = 0.

This constitutes the set (hi: i 1 1, 2, 17, 4, 14}.

2) S2-MCA: retaining the first five most significant modes

corresponding to a- - . This constitutes the set

{ni: I , 2, 41, 17, 42}.

The cost perturbation indices q of these reduced models, evaluated

with respect to only the elastic modes (since the rigid body modes have

infinite modal costs, they are not Included in the calculation of these

indices) are given below

.0395 for Sl-MCA

q =

-.1592 for S2-MCA

Choice of an Evaluation Model

At this point we point out that the full model with 44 modes is too

large even for the purposes of evaluating the subsequent controllers.

Hence, the 'evaluation model' should also be of lower order. This

situation is Illustrated in Fig. 5.3. The dashed lines in Fig. 5.3

indicate that the controller is designed based upon the reduced model.

The solid lines indicate that the controller is evaluated with respect

to the evaluation model. The only place where the full model is used
0e

is to generate the reduced model and the evaluation model. After the .

generation of these models, the evaluation model is treated as the

'true' model of the system.
0€
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A proper choice of the evaluation model is a research topic by itself,

and we do not attempt to answer it herein. For the present, we shall

select the order of the evaluation model to be n 20, for convenience.

This requires 10 second order modes to be retained, two of which must be

Urigid body modes nand n.The remaining 8 modes (elastic) are selectedF; to be the union of the first 5 modes from Figs. 5.2a and 5.2b, so that

the evaluation model will not be 'biased' toward either of the reduced

* models SI-MCA and S2-MCA. This results in the following evaluation model.

S-EYAL: ( i l (1, 2, 4. 10, 14, 17, 36, 37. 41, 42}
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The cost perturbation index associated with S-EVAL is -O

01l1 for = 0

1.0933 for B --

Now, note from the modal cost formula (3.3.4) that the i-th modal

cost Vi is independent of all the other modes; in particular it is inde-

pendent of the number of modes in the model. Consequently, if the modes

retained in the evaluation model are to be ordered according to their

modal costs, the sequence of these modes remains the same Independent of .

the model (full or evaluation) used for the calculations. Thus, the

modal cost analysis of S-EVAL would also yield the same reduced models

SI-MCA (for 10 0) and S2-MCA (for 0- ).

219
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5.2.2 Cost Equivalent Realizations.

Note from the CER-algorithm that, unlike the reduced models obtained

* by MCA, the cost equivalent realizations are not independent of the model

(full or evaluation) which is reduced. Therefore, since the subsequent

controllers are to be evaluated with respect to the evaluation model, we
use the evaluation model as the 'true' model and generate its CER, so that

the ensuing comparisons will be consistant.

In order to apply the CER-algarithm, we write the evaluation model in

its state-space form as follows.

iAx +Bu +Dw x XcR2P

Z -Mx + v
where

~T * T ~T T2 A. ~

TAx (n~49 "10' n 42' "4' ;10' ;421

A An: 0~] A r 0 2] C R,

r220
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*di ag (w4 t w10 9 . .41 001

a T Eb b2

Cr c1 ~ c2

C e cc c4, CIO' ... 9 c4 2 J

Now, the CER-algorithm requires the solution of the Lyapunov equation

(3.4-.7a.). Since the evaluation model (5.2.1) contains unstable subspace

(corresponding to the rigid body modes), we need to factor out this unsta- .
0 ble subspace, and compute the CER of the stable part (corresponding to

* . elastic modes {n4, qlO, ... 9 n421). Once this is achieved, then the unsta-

ble subsystem of (5.2.1) can be augmented to the resulting CER, to obtain

the reduced model of (5.2.1). In order to do this, write the stable part0

of (5.2.1) as

~e aA e xe + B eu +Dew, Xe R

Ye C exe (5.2.2a)

* where

De Be and Me UCe*S (5.2.2b)

The cost function considered in the CER-algorithm will then be

Vo V + BV (5.2.3a)
0e Ye Ze

where
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V A lim E ftllye(a) 2Il da (5.2.3b) ..

e = ln im 1  Z()112 do (5.2.3c)

Ze 0 t

With these modifications we are now In a position to apply the CER-

algorithm to the model (5.2.2) with the cost function (5.2.3).

The following results are obtained for B = 0, in (5.2.3a).

1) From the structure of Ce and Be in (5.2.1b), observe that the first

Markov Parameter

CeB e a a.' (

Since there are three outputs, from Theorem 3.8, the reduced model

of order 3 obtained by the CER-algorithm is not asymptotically sta-

ble. (The same result holds for a--, since z = y + v.)

2) The CER-algorithm yields six normalized Hessenberg components of

dimensions

nt  3, 1= 1, 2, 3, 4, 5 6

n . XIni =16
61=1

Thus there are 5 reduced models suggested by the CER-algorithm of

order 15, 12, 9, 6 and 3. Table 5.3 compares these reduced models

with respect to the metric 11 ARTr/ll AR11

2 2

* •'
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TABLE 5.3 COMPARISON OF DIFFERENT REDUCED MODELS BY CER-ALGORITHM

nr 11 ART1I 11 AR11 If A RTI I/11 ARII

15 1.513 e-9 -e+lO

12 8.812 8.835 .9974

9 109.9 -e-5 -e+7

6 103.3 19.64 5.26

3 144.8 0 -

Since the unstable subsystem xr c R4 corresponding to the rigid body

modes will be subsequently augmented to these reduced model, we select

the reduced model of order 6, so that the final reduced model of (5.2.1)

would be of order 10, (to be compatible with the reduced models generated

by MCA).

For 6.-, identical results are observed and identical reduced models

result, indicating that the modelling problem and the control problem, by

the CER-algorithm are separable. This is due to the relation

z ' y + V.

Thus, by CER-algorithm, there is only one conceivable reduced model

of (5.2.1) of order 10. This reduced model is denoted by $-CER.

Also observe that the reduced model of order 4, obtained by either

MCA or CER-algorlthm, for any value of 0, would be the same, namely the unsta-

ble subsystem xr c R
4 corresponding to the rigid body modes. We denote

*
this model by S4.
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In conclusion of this subsection, we have generated the following-

four reduced models.

1) Sl-MCA: of order 10, for 8 - 0

g 2) SZ-MCA: of order 10, for S-

3) S-CER: of order 10, for any a

4) S4: Rigid-body model

*The controllers designed based upon these four models are evaluated

with respect to the evaluation model, in the following section.

*2 9

* I 0



5.3 Desfon and Evaluation of Controllers

The controllers designed and compared in this section are based

upon the following four models of the SOT.

1) Sl-MCA

2) S2-,MCA

3) S-CER

4) S4

5) FULL: le., the evaluation model S-EVAL.

All these controllers are compared with respect to the evaluation model

S-EVAL.

Fig. 5.3 displays the Regulation cost V(y), defined in (4.3.3), vs.

the Control Energy, defined in (4.3.4), resulting from different controllers.

There is hardly any perceptible difference between these curves. However,

all controllers that are designed based upon any reduced models drive the

evaluation model to instability beyond a control energy of .6E-4 N2. Hence,

- •in view of the hardware involved, one would use a 4-th order controller,

designed based upon S4. The correspondfng RHS values of LOS(x) and LOS(y)

can be read from Figs. 5.4a and 5.4b.

Figs. 5.4a and 5.4b display the RiS values of the LOS(x) and LOS(y)

respectively as a function of the Control Effort, where the Control

Effort, is defined as

Control Effort V (u )

and where v(u) is defind in (4.3.4). Notice, once again from these

Figures, that all the reduced order controllers (nc=lO, 4) perform Just

as good as the full ord - controller (nc=20) until instability occurs.
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(of course, by LQG-optimal control theory, the 20-th order controller

remains stable over all bandwidth).

The smallest RMS values of the LOSWx and LOS~y) obtained by

different reduced order controllers is given in Table 5.5.

TABLE 5.5 REGULATION BY DIFFERENT CONTROLLERS

n Reduced Model LOSWx (Rad.) LOSWy (Rid.) V 1/2 (u)(t4)

10 Sl-NCA .2841 e-S .1703 e-S .7563 e-2

410 S2-NCA .2841 e-S .1676 e-S .7738 e-2

10 5-CER .2841 e-S .1833 e-S .7651 e-2

4 54 .2841 e-S .1833 e-5 .7639 e-21

Clearly then. if the mission specifications are

105x) .3 *-S Rad.

L05(y .2 e-S Rad.

one would pick the 4-th order controller. (marked by '1' in Figs. 5.4a,b)

instead of ntic 4 so that the performance specifications are met with

the least amount of on-line controller hardware/software. Recall that

the 4-th order controller is designed based upon the 4-thi order rigid-

body model, S4. Hence, for this SOT example, a rigid body model seems

to be sufficient for the controller design.

Fig. 5.5 shows the R1'S value of the input energy at the eight
00

actuators, corresponding to the 4-th order controller. Observe that

all the actuators are expending approximately the same amount of control

energy, which Is due to the Syimetry of the structure and the equal

0 penalty (i.e. A-18) on all the actuators.
229
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However, this choice of controller is prone to instability - even

a little increase in the control effort (which may happen due to the

variations of the plant parameters) may drive the closed loop system

unstable. Hence, in order to ensure some stability margin, the choice

of the 4-th order controller, marked by '2' in Figs. 5.4a, b, is

preferable. The corresponding LOS(x), LOS(y) and the control effort

is given below.

LOS(x) - .3036 e-5 Rad.

LOS(y) - .1823 e-5 Rad.

CONTROL EFFORT - .7186 e-2 Newt.

The control energy distribution is displayed in Fig. 5.6. This

choice of controller yields larger Rt4S value for LOS(x) than controller

11'. However note that, controller '1', which uses more control energy

than controller '2', does not give a better RNS value for LOS(y) - this

is due to the effect of the model errors, which are more pronounced

for controllers with higher control energy.
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5.4 Conclusion

The model reduction schemes, namely MCA and CER-theory, presented

.in Section 3, have been applied, in this section, to a Solar Optical

Telescope. Selecting four reduced models and an evaluation model,

different controllers have been designed and evaluated.

Based upon the results obtained, it is concluded that the 4-th

order rigid-body model is sufficient for the controller design. Two

controller designs have been proposed, namely controllers '1' and '2'.

Even though, controller '1' regulated LOS(x) better, it is prone to

instability. In order to ensure some stability margin, controller '2'

is preferred. This controller yields the following regulation and

control effort.

LOS(x) = .3036 e-5 Rad.

LOS(y) -.1823 e-5 Rad.

Control Effort - .7186 e-2 Newt.

To check if any of the actuators uses more control energy than allowable

*(by mission specifications), Fig. 5.6 has been presented which displays

the control energy distribution for controller '2'.

2 3

2 3 2 . . : -
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6.0 CONCLUSION

This report has presented the design of reduced order controllers

based upon reduced models of a given system. Considering the philosophy

of such a design scheme, it is pointed out that the reduced models

should reproduce accurately not only the output y, but also the measure-

ment z.

The basic model reduction scheme used in this report is Component

Cost Analysis (CCA). In particular the following two special cases of

CCA have been adopted for the model reduction purposes.

1) Modal Cost Analysis, (MCA)

2) Cost Equivalent Realizations, (CERs).

Both these schemes are shown to yield reduced models whose cost pertur- S

bation indices can be predicted exacily, I.e. q - q. In addition CERs

have (in fact they are defined by) the property q 0 0. However for

mechanical systems for which modal data is available MCA is much simpler

to Implement than the CER-algoritthm.

Section 4 has presented the controller design and evaluation strategy '
-.

and has offered metrics for the evaluation and comparisdn of the

control 1 ers.

A simply supported beam example has been formulated in Section 2,

and has been used as a numerical example for the illustration of the

design procedure. For this example, it turns out that the reduced models

by MCA are superior to the CERs. It has also been observed that the

CERs tend to contain high frequencies, while the reduced models produced

by MCA retain low frequencies. Consequently, it is shown by simulation,

that the trajectory errors associated with CERs are smoother than the

errors associated with the MCA-reduced models. Using the same example
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in Section 4, it is pointed out that, at low bandwidth of the controllers,

the influence of model reduction schemes is not significant. But at

high bandwidth, the performance of the controllers depend, remarkably,

that the effect of the order of the reduced model is significant only

at high bandwidth.

Same techniques have been adopted for the controller design for

a Solar Optical Telescope (SOT) in Section 5. It turns out that, for

this SOT, it is sufficient to consider only the 4-th order rigid-body

model of SOT for the controller design. Based upon the performance plots

produced in Section 5, a 4-th order controller has been proposed as a

suitable choice.

It must be pointed out that the observations and results presented

in Sectior 5 are based upon the 10-mode evaluation model, S-EVAL. These

observations may change for a different choice of the evaluation model.

The question of the appropriate choice for the evaluation model remains

-4unanswered.i I
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APPENDIX: PROOFS OF THEOREMS IN SECTION 3

Proof of Theorem 3.1

Partition the covariance matrix X as

X11  X12  ... X

X* X 21  X22 .. 2 (A. Ia)

L.XN X N2  .. X

* where
Xt l-1m E Ini~t). ]l) e (A.lIb)

Using the special structure of the matrices in (3.3.2), the (i,j)-block S

paititoned equation of (3.2.4b) yields,

X AIi + A 1 Xtj +V i WT - 0 . (A .2)

For J-i, the solution X to (A.2) is given by,

Now, rewrite (3.2.4a) as

j=1j $
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70 .- 7J-7 7,W

Using (3.3.2c) and (A.3), the first term on the right hand side of

(A.4) can be expressed as

TRECIQ.CIX-i -] -- Pi 2 + Wi lip! 11} llb.I . (A.5)

ki S

Hence, to complete the proof, we will now show that, under any of the three

conditions of the theorem, the following relation holds.

T -iTr[ CXj) I (A.6a)

or equivalently,

STr[C T QC.X.J o . (A.6b)

a) b T U b~ 0 ,j 0' i

From the definition of V i and W in (3.3.2), this implies that

T

Hence, for non-zero damping, X = 0, is the unique solution to (.)

since both A,, and A iare asymptotically stable. Clearly, then, (A.6b)

holds.

b) CQCJ 0 ,j I

Obviously (A.6b) holds.

with wi ww and P1T Q)PuPIT QP1  $
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Partitioning Xi as .- T

11 1i2 "

xij (aT) -[X U 1 (A.7a)
2~1 i 22

write (A.2) as

F1  x 0 2 1I- 0 1 0 b. Ui a

Lij iJi t  -c iI1[ Q
Ij + I i + 0

L*j ij - 1, -,1 ' ,L ii i] L, - bi ib
(A.7b)

S

to obtain tho following relations, (after some algebraic manipulations).

l j ". 12j (A 3a)zI Ij " 2 a( 2 I 2 i Zi 2l

21 12  (A.8b)

II 1" 12 (A.8c)Zlj " U I

22 biT Ub j.-2x2 blUb x 12 (A.Sd)

i " ij " 6ij Ij

where

6 j 2c Cal + I v a S
2I 1 +  3 2(A.8e)

a 2  2
i Ii "j

* Now, for t 0, W, the following occurs.

239

0 e



12 b T (A.9a) 2A__a

11 22
] 0 x ii 0. (A. 9b)

Therefore, substitution of (A.9) (A.7a) and (3.3.2a) yields,

Tr[CTQC X i] P P Tp P !ZT pj= j i (A.l0)
13 ij2

where the last equality follows by hypothesis.

Hence, in all the three cases, the equation (A.6a) is shown to be

satisfied. In viewgof (A.5), this concludes the proof. #
* 0

Proof of Theorem 3.2

Assume, without loss of generality, that the modes have been ranked

according to (3.2.6), so that only the first r 'components' (as definedC o
in (3.3.1)) are retained in the reduced model. Now, from the definition

of the cost perturbation indices, it suffices to show that

VR V R

to prove the theorem.

Recall from the previous proof that, under either of the three

conditions of Theorem 3.1, we have

r = r Tr[CjQ.C Xli , (A.lla)

4 where Xii, i = I, 2, ... r, satisfies

x AT +A x + W1 D T =0 (A.12b)

2-40* 0
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Note that the modal costs are independent of other modes, nj, j#i,

and can be independently calculated by considering only the i-th modal

data. Furthermore, this independence and the expressions (A.ll) hold

for an number of modes. Consequently, the cost VR associated with the

reduced model is given by

r
VR " V (A.12a)

where

V - Tr[C T CXi] 1 1 1, 2, ... r (A.12b)

and where satisfies

T ii + A i + V i WD T  0 (A.12c)

Since A 1 iIs asymptotically stable, comparison of equations (A.12c) and

(A.llb) reveals that

a t .X i = 1, 2, r (A.13a)

and therefore

i Vi (A.13b)"-'" -

and hence VR V R #

Proof of Theorem 3.3

In order to prove the theorem we will follow these three steps in

1) Establish the existance of a closed form, diagonal solution

to the Riccati equation (3.3.10).

2) Show that the closed loop system can be expressed in the .2

decoupled modal form.

3) Derive the expressions (3.3.14) from Theorem 3.1. i

2



- . - -- w.w .-

S

1) Defining the state vector x as

xT" nn nn2""NnN' (A.14a) :-

the system matrices take the following form.

A - diag (A11, A22, ..., AN} (A.14b)

01
A i. (A.14b) 2

L1 2 -2€i af]i q

B B , B (A.14c)

Now, assumption (A2) implies that,

BR'1BT a!- diag (0, r , 0, r , ..., O, 2 (A.15a)

and assumption (A3) implies that

cTQc dlag(sa1
2, 1, W2, , "'* 2 1}. (A.15b)

Hence, the Riccati equation (3.3.10) can be written in its partitioned l

form as

I K 2  Ki A1  0 0 0 T 0*
IN 1KAl 1 ..0 1 fil 2 K7" Ai2r  -- --0,T M qN 0 A.

K 22 z2 12  K2 2  ..._ . . o V o ;.:: N .Vj.
T T iL9NKiN .2 1 .. KNN 0 0 ... A, 0 0..K1
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T TW

... .. -. - ' -..-,

KII ... KIN T . K ... K 0

. .. . + . .=0

T0 T T .

Q.

o

(A.16)

where CT QC_ diag (w 1}. Now from assumption (AZ), the system is

controllable (since every mode is now independently controllable). There-

fore, the solution to (A.16) is unique [ 8 J.

We claim now that the solution K to (A.16) is

K = diag (K1 , , ... , KNN} (A.17a)
S

where k k12

K d] 2 (A.17b)

and where k12 and kt3 are defined in the theorem. To prove our claim, we

show that (A.17) does solve (A.16) and hence by uniqueness, it is the

solution to the Riccati equation (A.16). Substitution of (A.17) into .

(A.16) yields

K* + A 1TK1  -1~K 1 aT a .K +, C 0 1,1 29 ... 9 N
iA ii ii f CJ C "' QC

(A.18)

which must now be satisfied by the K11 defined in (A.17b). Substitution

of (3.3.14b-e) verifies this.
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Thus, a closed form solution to the Riccati equation (A.16) is

obtained.

2) Now, the optimal control law is given by [8 a

u p1

which, in view of (A.14a), (A.14c) and (A.17) becomes

NN .
U P btk1zni 1- 1 bN k . (A.19b) S

Using (3.3.11), this expression can be rewritten as

N N1
U " gi n , g ; i  (A.19c)

where, g1  e.i (A.19d)

a rik2
gi' =  2 ei (A.19e)

and where e is the unit vector defined In (3.3.11b). Note that, since

bi =iei , from (A.19d) and (A.19e) we get .
Tg =0 and bTg! 0, j i (A.20)

Therefore the closed loop representation (3.3.11) simplifies to

- 2-2 + bW (A.21a)

where wg1  bTgj w + I r 2 k (A.21b)
whee i P I bg r i ..

and 2 2;iwi + b g 2c w 4 r k (A.21c) b

It is clear from (A.21a) that the modes ni of the closed loop system are

also decoupled.
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3) To obtain the expression (3.3.14), note that the cost function

V .- y + (,2,2 Ida (A.22a)
0

can be written as

-- (  V(IlIl d (A. 711w =.d (A.22b)

where ."

VTA T, UT]  (A.22c)

and Q. diag {Q, pR) . (A.22d)

Now from (3.3.12a,b) and (A.19), (A.22c) can be expressed in the

required form as

N N
v Fin, + I P~i,' (A.23a)

where,

Si]c 3N (A.23b)

and pi' Nxl g (A.23c)[1L*1
Now, since b TJb 0, J 1, Theorem 3.1 can be appiied to the closed

loop system (A.21), to get the closed-loop modal cost formula as

;c (lilI 11 I)l + I ll II (A.24)
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7

Substitution of (3.3.11), (3.3.12), and (A.23) in (A.24) results in

(3.3.14), thereby completing the proof. #

Proof of Theorem 3.5
N N

Let y =iu i i i

and "
N N

Z = m n + m' + . ,1.1 lull -

Then (3.3.23a) Implies that

m Tpi and m i' - Tpi' (A.25)

Substitution of (A.25) in (3.3.22a) yields

12 ~ 2 j 2  Ilb12 (A6aV { 11 PTi + s II Pi ITi bII (A.1ua)
1  kiw TTV T TTV T

which, in view of (3.3.23b) becomes

p 2  aV (A.26b)

Therefore,

V V +V (+ 08)v (A.27)

Since (1 + aB) is positive constant, the ranking of the modes by the open

loop modal cost V is not affected by a and a. Hence, for a fixed order01 

,o

r of the reduced model, B does not affect the modes retained in the

reduced model. #

Proof of Theorem 3.6 . --

Substitute the nomalization condition (3.4.2) in the general expres-

sions for component costs (3.2.4a) to get
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V Tr[CTQcJ1 1  C (cTQC]Ji '  1, 2. ... , n. (A.28)
T C

(Since the 'components' are individual coordinates,[C QC]ii is a scalar).

The proof now follows from the structure of the output matrix C in

(3.4.5b) and from (3.4.4). #

Proof of Theorem 3.7 -

The proof relies on a result derived in ( 17], which is restated

hemr.

Lemma 3.1, [ 17 Let xi be an elgenvalue of a matrix A. Then the sensi-

tivity of %I to the perturbations in A, measured by

Ai

where I [.] 11 2 Tr {[]T[.])}, is minimized if and only if A is normal

(i.e., - ATA).

Now note from Theorem 3.6 and from (3.4.4) that the component costs -
T C.

are the elgenvalues of C Qc, I.e.,

Vi - (Tc,), I 1. 2, ... , n. (A.29)

Since, C TQC is symmetric (hence, normal), the proof follows from Lenmma 3.1.

Proof of Theorem 3.8

Partition the model (3.4.5) as

'AR + DR w (A.30) e

'TJ LT AT J LTJ D~T
V [, CR CTJ [ t]
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n n
where x R cRradx R *. nt + n r n. (Note from (3.4.5b) that for

nr 1 l1 s C T a 0.) Since the covariance X satisfies (3.2.4b), substitution

of (3.4.2), and using the partitioned form (A.30) in (3 .4.2) yields

LAT 1 AR AT1

FAT Tr AR AT T VIw ~ 4
The first partitioned equation of (A.31a) is written out as

T TAR + A R + DVRWOR a 0 (A.31b)

(1) Now let 9 be a left eigerivector of AR corresponding to the elgenvalue

O )i(AR)2 i.e., C and xi(AR) satisfy

n

C*A R *. i(AR)C* * C C r (A.32a)

and A 4 * (A )E (A.32b)

where *denotes the conjugate transposition and '-denotes the conjuga-

tion. Pre- and post- multiply (A.31b) by C* and C respectively to get

T T
CA&+ C*A RE + T*RWk a 1. (A.33a)

which upon substitution of (A.32) yields

2 Re{xi(AR)} -1T1 Dil Co 1 ll (A.33b)

Since the right hand side of (A.33b) cannot be positive, part (1) is

* thus proved.

(ii) Now, from (A.33b) see that

* efxi(ARdl *0 if and only if C*VR a0. (A.34)S
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In this event (Re(xI(AR)} - 0) the right hand side of

*[ AR - 3P41 C, 1, 2, ... , (A.35a) -

is zero. Hence (3.7.35a) leads to

A-*A R (A (A.35b)

For each (a = 0, 1, 2, nr.2} the right hand side of (A.35b) becomes

zero. Thus for a - 0, 1, 2, ... , nr-2, the left hand side of (A.35a)

leads to

nr-

*[CRARPR. ... , A R r VR 0 If and only If Re(i(AR)} a 0

(A .36)

Thus from (A.34.) and (A.36) , ReUXI(AR)} = I, if and only if rank

[VR, ARVR, . AR R3 nr which implies that the matrix pair (AR,VR)

is uncontrollable, [8 ]. This proves part (ii) of the teorem.

(III) Let aJ(p) 0 0, ta 1, 2, ... , I. Then,

J3(p)a CV C 1  a 0,

where the structure in (3.4.5) has been used. Notice from (3.4.4) that,

for a positive definite Q., (3.4.4) is satisfied if and only if rank [C1]-n1.

Hence, CI01 - 0 if and only if V1 - 0. Now, consider,

J2r) CAD - C1AllV1 + CIA 12"2 - CIA1 2V2 - 0.

Sine IC1 1 $ 0, and Al, is monic by construction (i.e., rank CA12) -n 2  n1,

[3.61), C A1 202 a 0 if and only if 02 a 0. Proceeding similarly yields,

Jt (p) - 0, - 1, 2, ..., , Vj O, j 1. 2, ..., 1. Hence from the

definition of DR In (3.4.14b), It follows that
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! I

= 0 for all nr n Xjnl .R- j=l

Clearly then the reduced model (3.4.14) is not controllable, and hence by

(ii) it is not asymptotically stable for all

I
nr < n . _•

j=l J

Proof of Theorem 3.9

() The steady state output covarlance can be written as

lim L,: (^(t ) -t-- T' ( €) T "  T .

where XR Is the steady state covarlance of the states xR. Now, XR

satisfies,

XRA + ARXR + VR=R O. (A.37)

Since all CERs are asymptotically stable, comparing (A.37) with (A.31b)

shows that,

XR I n (A.38)
r

Therefore,

4t

lim T T T
t.- E(t)q (t)) CRCR C1C ; n ,F.where the structure of CR in (3.4.14) has been used. Furthermore, since

X * In, from (3.4.2), we have

C1T = ccT Cxe t- E (q(t)gT(t)}9

thus proving (3.4.15a).
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* S.

To prove (3.4.15b), consider the trajectories x(t) and xR(t) ,

(assuming zero initial conditions):

x(t) feA (w(a , (A.39a) 7
0

and
t A( b

X (t) * f e + RV)(t)da (ToT
R 0

Hence,

1rn 'T 1 im T T
RRE(R(t)y ( t) CR AXR(t)XR(t).CR

hlimC he t)e+ tTn IrpeW T theT T function
t- R O(ARR() wtJf R dCR

t t

2 urnEXRt~ T WDT e R daCT}I
w t Ew CRA R 0X(tR) R

llim ~ TcT+ -T CVtRR (A .40a)

where the screening property of the delta function

E T 0
Efw(t)w (a)da f Wa(t-a)da aW12

0 0

has been used to obtain the second term in (A.40a). Since, xR(t), and

- w(a), t > a, are uncorrelated with each other, the first term in (A.40a)

becomes zero resulting in

Simi-Trly,0 IT

t-m Efy(t)yT(t)} -ECRVgRWORCR  "i

= 0 WD { T1 1  (A .40b) i"

Similarly, O
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Iit2 E( (t) -T(t)} I c Iv T I Cv ~T

=rnE((t)V(t)}

(ii) Consider,

J1 (i) = RVR Cl 1  CD Jlp) for all i =1, 2, p. ,

and

J2 (i) =CRARVR =C 1A11V 1 + C 2A12V 2 = CAD = J()

for all i - 2, 3, .. ,p

4S

Part (ii) is thus proved by extending this argument to J.(i), j =1,2, .. i
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MISSION
* Of

Rom Air Development Center
RAV9C ptan6s and executes6 teseatch, devetopment, tes-t and
,setected acquiiLtion ptwgtam in 6ucppott o6 Command, Cont~Aot

* Communications and IneLience (C31) activtes6. TechniLcat
and eng-Lnee1ing sppot~t wititn ctea6 o6 technicaC competence

ClZ6 ptovided to ESV Pkoq'wam O jiau (POs) aind othe)L ESV
etenient6. The ptiZncZpat tchnicat mis.6ion a~ea.6 a-te
communi~cations, eeecttomagnetic guidance and con-tAot, AWL-
veitLtance o6 g'tound and aewo4pace obJect6, intetgence da-ta
cottection and handtinq, in~ounation 4qystem technotogy,
io no. pheAic p4opagation, -so1tid sta-te s ciences, tmicAowkxve
phyqic,6 and etect~onic iteJiabitity, maintanabdtqt and

* compatibiL.ty.
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